精英家教网 > 高中数学 > 题目详情
已知圆C和y轴相切,圆心在射线x-2y=0(x>0)上,且被直线y=x+2截得的弦长为4
2
,求圆C的方程.
考点:直线与圆相交的性质
专题:直线与圆
分析:设圆心的坐标为(2b,b),b>0,则圆的半径为2b,再根据条件可得 (2
2
)
2
+(
b+2
2
)
2
=(2b)2,由此求得b的值,可得所求的圆的方程.
解答: 解:设圆心的坐标为(2b,b),b>0,则圆的半径为2b,
再根据被直线y=x+2截得的弦长为4
2
,弦心距为
|2b-b+2|
2

(2
2
)
2
+(
b+2
2
)
2
=(2b)2,求得b=2,或b=-
10
7
(舍去),
故所求的圆的方程为 (x-4)2+(y-2)2=16.
点评:本题主要考查求圆的标准方程的方法,点到直线的距离公式,弦长公式的应用,求出圆心坐标和半径的值,是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长为6cm的线段AB上任取一点C,现作一矩形,邻边长分别等于线段AC,BC的长,则该矩形面积小于8cm2,的概率是(  )
A、
1
3
B、
2
3
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(0<3a<b),且f(x)≥0对任意实数x恒成立.
(I)当b=4
a
时,求c的最小值;
(Ⅱ)当
f(-2)
f(2)-f(0)
取最小值时,对任意的x1,x2∈[-3a,-a]都有|f(x1)-f(x2)|≤4a,
求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
满足:|
a
|=3
|
b
|=2
|
a
+
b
|=4
,则|
a
-
b
|
=(  )
A、
3
B、
5
C、3
D、
10

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=4,b=4
3
,A=30°,B为锐角,那么角A,B,C的大小关系为(  )
A、A>B>C
B、B>A>C
C、C>B>A
D、C>A>B

查看答案和解析>>

科目:高中数学 来源: 题型:

任意x∈[0,
π
3
],使3cos2
x
2
+√3sin
x
2
cos
x
2
<a+
3
2
恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=tan2x+2tanx=-2,且x∈[-
π
3
π
4
],求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设矩阵A=
1
3
0
-1
,B=(
1
0
  
-2
1
)(t为参数),则(AB)-1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
4
-β)=-
12
13
,-
π
4
<β<
4
,cos(α+
4
)=
4
5
4
<α<
4
,求:
(1)sin2β;
(2)sin(α+β).

查看答案和解析>>

同步练习册答案