精英家教网 > 高中数学 > 题目详情
5.已知抛物线C1:y2=2px(p>0)经过圆C2:x2+y2-2x-4$\sqrt{2}$y-16=0的圆心,过C1的焦点的直线l与抛物线相交于A,B两点,O为坐标原点,则$\overrightarrow{OA}$•$\overrightarrow{OB}$=-12.

分析 首先解得抛物线的方程,接着,由直线的斜率是否存在进行讨论,将直线的方程与抛物线的方程进行联立,通过韦达定理,并进行一定的计算和转化,即可得出答案.

解答 解:∵抛物线C1:y2=2px(p>0)经过圆C2:x2+y2-2x-4$\sqrt{2}$y-16=0的圆心,
∴圆心(1,2$\sqrt{2}$)在抛物线上,
代入,可以解得,p=4,
∴抛物线的方程为y2=8x,
∴抛物线的焦点为(2,0)
∵过C1的焦点的直线l与抛物线相交于A,B两点,
∴分两类进行讨论:
①若直线的斜率不存在,则A(2,4),B(2,-4),
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=4-16=-12,
②若直线的斜率存在,设直线的方程为:y=k(x-2),
与抛物线的方程联立,k2x2-(4k2+8)x+4k2=0,
∴x1+x2=$\frac{4{k}^{2}+8}{{k}^{2}}$,x1x2=4,
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=(k2+1)x1x2-2k2(x1+x2)+4k2═(k2+1)•4-2k2•$\frac{4{k}^{2}+8}{{k}^{2}}$+4k2=4-16=-12.
综上,$\overrightarrow{OA}$•$\overrightarrow{OB}$=-12,
故答案为:-12.

点评 本题考查抛物线的方程求解方法,考查抛物线与直线的综合,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.椭圆x2+$\frac{y^2}{b^2}$=1(|b|<1)的左焦点为F,A为上顶点,B为长轴上任意一点,且B在原点O的右侧,若△FAB的外接圆圆心为P(m,n),且m+n>0,椭圆离心率的范围为(  )
A.$({0,\frac{{\sqrt{2}}}{2}})$B.$({0,\frac{1}{2}})$C.$({\frac{1}{2},1})$D.$({\frac{{\sqrt{2}}}{2},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在正三角形ABC中,D、E、F分别为各边的中点,H、G、I、J分别为AD、AF、BE、DE的中点,则将△ABC沿DE、EF、DF折成三棱锥后,则异面直线GH与IJ所成的角的大小为(  )
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.${∫}_{-2}^{2}$(sinx+ex)dx=e2-e-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图1是某同学进入高三后12次数学测试成绩的茎叶图,这12次成绩记为A1,A2,…,A12,图2是统计茎叶图中成绩在一定范围内次数的算法流程图,那么该算法流程输出的结果是(  )
A.5B.7C.106D.114

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知F1、F2是椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,F1(-1,0),且椭圆M过点(1,$\frac{2\sqrt{3}}{3}$).
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)过F1、F2分别作直线l1与l2,l1交椭圆于B,D两点,l2交椭圆于A,C两点,且l1⊥l2,若四边形ABCD的面积为$\frac{96}{25}$,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,则f2015(x)=-sinx-cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(x3-$\frac{1}{x}$)4的展开式中x8的系数为-4.(用数字填写答案)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某数学老师对所任教的两个班级各抽取30名学生进行测试,分数分布如表:
分数区间45
[0,30)0.10.2
[30,60)0.20.2
[60,90)0.30.4
[90,120)0.20.1
[120,150]0.20.1
(1)若成绩120分以上为优秀,求从乙班参加测试的成绩在90分以上(含90分)的学生中,随机任取2名学生,恰有1人为优秀的概率;
(2)根据以上数据完成下面的2×2列联表,则犯错概率小于0.1的前提下,是否有足够的把握认为学生的数学成绩优秀与否和班级有关?
优秀不优秀总计
甲班62430
乙班32730
总计95160
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
下面的临界值供参考:
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001

查看答案和解析>>

同步练习册答案