精英家教网 > 高中数学 > 题目详情

【题目】抛物线的图象关于轴对称,顶点在坐标原点,点在抛物线上.

(1)求抛物线的标准方程;

(2)设直线的方程为,若直线与抛物线交于两点,且以为直径的圆过点的值.

【答案】(1);(2).

【解析】

1)由题意可设抛物线的标准方程为:y22pxp0),把点P14)代入解得p.可得抛物线C的标准方程.

2)直线l的方程为:ykx+1,代入抛物线方程,设Ax1y1),Bx2y2).由题意可得:0,可得(x11)(x21+y12)(y22)=0,把根与系数的关系代入即可得出.

1)由题意可设抛物线的标准方程为:y22pxp0),把点P14)代入可得:422p×1,解得2p16

∴抛物线C的标准方程为:y216x

2)直线l的方程为:ykx+1,代入抛物线方程可得:k2x2+2k16x+10

△=6416k0,解得k4

Ax1y1),Bx2y2),

由题意可得:

.

17k246k150

解得kk3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个工厂在某年连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:

x

1.08

1.12

1.19

1.28

1.36

1.48

1.59

1.68

1.80

1.87

y

2.25

2.37

2.40

2.55

2.64

2.75

2.92

3.03

3.14

3.26

(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;

(2)①建立月总成本y与月产量x之间的回归方程;

②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?

(均精确到0.001)

附注:①参考数据:

②参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EF分别是BCCD的中点,GEF的中点,现在沿AEAFEF把这个正方形折成一个空间图形,使BCD三点重合,重合后的点记为H,那么,在这个空间图形中必有(  )

A. 所在平面B. 所在平面

C. 所在平面D. 所在平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.已知函数.

(1)求过点图象的切线方程;

(2)若函数存在两个极值点 ,求的取值范围;

(3)当时,均有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是边长为3的正方形, 平面 平面 .

(1)证明:平面平面

(2)在上是否存在一点,使平面将几何体分成上下两部分的体积比为?若存在,求出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体中,四边形为矩形, 为等边三角形,且平面平面 .

(1)证明:平面平面

(2)若求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义在R上的奇函数,且当x0时,fx)=x2+2x.现已画出函数fx)在y轴左侧的图象如图所示,

(1)画出函数fx),xR剩余部分的图象,并根据图象写出函数fx),xR的单调区间;(只写答案)

2)求函数fx),xR的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,顶点A(3,7),边AB上的中线CD所在直线的方程是,边AC上的高BE所在直线的方程是.

1)求点A关于直线CD的对称点的坐标;

2)求顶点BC的坐标;

3)过A作直线,使B,C两点到的距离相等,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若恒成立,求实数的取值范围;

(2)已知关于的方程有两个实根,求证: .

查看答案和解析>>

同步练习册答案