精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足 = =3.
(Ⅰ)求△ABC的面积;
(Ⅱ)若b+c=6,求a的值.

【答案】解:(Ⅰ)因为 ,∴
又由 =3,
得bccosA=3,∴bc=5,

(Ⅱ)对于bc=5,又b+c=6,
∴b=5,c=1或b=1,c=5,
由余弦定理得a2=b2+c2﹣2bccosA=20,∴
【解析】(Ⅰ)利用二倍角公式利用 = 求得cosA,进而求得sinA,进而根据 =3求得bc的值,进而根据三角形面积公式求得答案.(Ⅱ)根据bc和b+c的值求得b和c,进而根据余弦定理求得a的值.
【考点精析】认真审题,首先需要了解二倍角的余弦公式(二倍角的余弦公式:),还要掌握余弦定理的定义(余弦定理:;;)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知p:方程 =1表示焦点在x轴上的椭圆,q:双曲线 =1的离心率e∈( ).
(1)若椭圆 =1的焦点和双曲线 =1的顶点重合,求实数m的值;
(2)若“p∧q”是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过点E(1,0)的直线与圆O:x2+y2=4相交于A、B两点,过点C(2,0)且与AB垂直的直线与圆O的另一交点为D.
(1)当点B坐标为(0,﹣2)时,求直线CD的方程;
(2)求四边形ABCD面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 为f(x)的零点,x= 为y=f(x)图象的对称轴,且f(x)在( )上单调,则ω的最大值为(
A.11
B.9
C.7
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的通项公式an=ncos ,其前n项和为Sn , 则S2015=(
A.1008
B.2015
C.﹣1008
D.﹣504

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列结论中: ①函数y=sin(kπ﹣x)(k∈Z)为奇函数;
②函数 的图象关于点 对称;
③函数 的图象的一条对称轴为 π;
④若tan(π﹣x)=2,则cos2x=
其中正确结论的序号为(把所有正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设事件A表示“关于x的一元二次方程x2+ax+b2=0有实根”,其中a,b为实常数. (Ⅰ)若a为区间[0,5]上的整数值随机数,b为区间[0,2]上的整数值随机数,求事件A发生的概率;
(Ⅱ)若a为区间[0,5]上的均匀随机数,b为区间[0,2]上的均匀随机数,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若曲线C1:x2+y2﹣2x=0与曲线C2:mx2﹣xy+mx=0有三个不同的公共点,则实数m的取值范围是(
A.(﹣
B.(﹣∞,﹣ )∪( ,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(﹣ ,0)∪(0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F是双曲线 =1(a>0,b>0)的左焦点,E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围为(
A.(1,2)
B.(2,1+
C.( ,1)
D.(1+ ,+∞)

查看答案和解析>>

同步练习册答案