精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以坐标原点为极点,轴非负半轴为极轴且取相同的单位长度建立极坐标系.已知点轨迹的参数方程为为参数),点在曲线上.

(1)求点轨迹的普通方程和曲线的直角坐标方程;

(2)求的最大值.

【答案】(1) 曲线的直角坐标方程为;(2) .

【解析】分析:(1)消去参数,即可得普通方程,注意变量的范围;

(2)点在曲线上,化为直角方程即为圆,数形结合利用圆和线段的关系求最值即可.

详解:

(1)由消去参数,得.

,∴.

故点轨迹的变通方程是.

,∴,∴,即.

故曲线的直角坐标方程为.

(2)如图:

由题意可得,点在线段上,点在圆上,

∵圆的圆心到直线的距离

∴直线与圆相切,且切点为.

易知线段上存在一点

则点与圆心的连线,与圆的交点满足取最大值.

即当点坐标为时,取最大值.

的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市化工厂三个车间共有工人1 000名,各车间男、女工人数如下表:

第一车间

第二车间

第三车间

女工

173

100

y

男工

177

x

z

已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0. 15.

(1)求x的值;

(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数fx),若fx0=x0,则称x0fx)的不动点,若f[fx0]=x0,则称x0fx)的稳定点,函数fx)的不动点稳定点的集合分别记为AB,即A={x|fx=x}B={x|f[fx]=x},那么:

1)函数gx=x2-2不动点______

2)集合A与集合B的关系是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为,点在椭圆上,

求椭圆C的方程.

斜率为k的直线l过点F且不与坐标轴垂直,直线l交椭圆于AB两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,椭圆的中心为坐标原点,焦点轴上,且在抛物线的准线上,点是椭圆上的一个动点,面积的最大值为.

1)求椭圆的方程;

2)过焦点作两条平行直线分别交椭圆四个点.求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个顶点落在半径为的球的表面上,三角形有一个角为且其对边长为3,球心所在的平面的距离恰好等于半径的一半,点为球面上任意一点,则三棱锥的体积的最大值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数在区间上存在零点,求实数的取值范围;

2)当时,若对任意的恒成立,求实数的取值范围;

3)若函数上的值城为区间,是否存在常数,使得区间的长度为?若存在,求出的值;若不存在,请说明理由.(注:区间的长度为).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的单调区间;

2)若函数处取得极大值,求实数的取值范围

查看答案和解析>>

同步练习册答案