精英家教网 > 高中数学 > 题目详情

(文) 已知四边形OABC为直角梯形,∠AOC=∠OAB=90°,PO⊥平面AC,且OA=3,AB=6,OC=2,PO=3.
(1)求证:AB⊥PA;
(2)求异面直线PB与OA所成的角θ(用反三角函数值表示).

证明:(1)以O的坐标原点,OA,OC,OP方向分别为x,y,z轴正方向建立空间坐标系
∵OA=3,AB=6,OC=2,PO=3
∴A(3,0,0),B(3,6,0),P(0,0,3)
=(0,6,0),=(3,0,-3)
=0

即AB⊥PA;
解:(2)∵=(3,6,-3),=(3,0,0),
则异面直线PB与OA所成的角θ满足
cosθ===

分析:(1)以O的坐标原点,OA,OC,OP方向分别为x,y,z轴正方向建立空间坐标系,分别求出AB与PA的方向向量的坐标,根据两向量的数量积为0,即可判断出AB⊥PA;
(2)分别求出异面直线PB与OA的方向向量的坐标,代入向量夹角公式,求出θ的余弦值,进而得到异面直线PB与OA所成的角θ.
点评:本题考查的知识点是异面直线及其所成的角,空间中直线与直线之间的位置关系,其中建立空间坐标系,将线面垂直问题及线线夹角问题转化为向量垂直及向量夹角问题是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网精英家教网(理)已知函数f(x)=
ln(2-x2)
|x+2|-2

(1)试判断f(x)的奇偶性并给予证明;
(2)求证:f(x)在区间(0,1)单调递减;
(3)如图给出的是与函数f(x)相关的一个程序框图,试构造一个公差不为零的等差数列
{an},使得该程序能正常运行且输出的结果恰好为0.请说明你的理由.
(文)如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判
断点O、G、H是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年潍坊一模文)(12分)

    已知双曲线的左、右两个焦点为, ,动点P满足|P|+| P |=4.

    (I)求动点P的轨迹E的方程;

    (1I)设过且不垂直于坐标轴的动直线l交轨迹E于A、B两点,问:终段O

上是否存在一点D,使得以DA、DB为邻边的平行四边形为菱形?作出判断并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年山东卷文)(12分)

已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为l.

(Ⅰ)求椭圆的方程;

(Ⅱ)直线过点P(0,2)且与椭圆相交于A、B两点,当ΔAOB面积取得最大值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(04年湖南卷文)(12分)

如图,已知曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于O,A,直线x=t(0<t<1)与曲线C1,C2分别交于B,D.

(Ⅰ)写出四边形ABOD的面积S与t的函数关系式S=f(t);

(Ⅱ)讨论f(t)的单调性,并求f(t) 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012年高考(辽宁文))已知点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为2正方形.若PA=2,则△OAB的面积为______________.

查看答案和解析>>

同步练习册答案