精英家教网 > 高中数学 > 题目详情

【题目】设常数,函数.

(1) ,求的单调递减区间;

(2) 为奇函数,且关于的不等式对所有的恒成立,求实数的取值范围;

(3) 时,若方程有三个不相等的实数根,且,求实数的值.

【答案】(1) 的单调递减区间为;(2) ;(3)

【解析】

(1)去绝对值符号后画出函数的图像,从而得到函数的单调减区间.

(2)根据函数为奇函数可得,再利用去掉绝对值符号,最后参变分离求的取值范围.

(3)先去掉绝对值符号,画出函数图像,因为有三个不同的解,可以得到其中有两个根的和为,再利用求根公式求出最大根,从而得到关于的方程,解方程可得的值.

(1) 时,.如图知,的单调递减区间为.

(2) 为奇函数,得,解得.

时,.

从而.

上递增,故当时,.故.

(3)时,.

如图,要有三个不相等的实根,则,解得.

不妨设,当时,由,即,得.

时,由,即,得.

,解得.

,得的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了让观赏游玩更便捷舒适,常州恐龙园推出了代步工具租用服务.已知有脚踏自行车与电动自行车两种车型,采用分段计费的方式租用.型车每分钟收费元(不足分钟的部分按分钟计算),型车每分钟收费元(不足分钟的部分按分钟计算),现有甲乙丙丁四人,分别相互独立地到租车点租车骑行(各租一车一次),设甲乙丙丁不超过分钟还车的概率分别为并且四个人每人租车都不会超过分钟,甲乙丙均租用型车,丁租用型车.

(1)求甲乙丙丁四人所付的费用之和为25元的概率;

(2)求甲乙丙三人所付的费用之和等于丁所付的费用的概率;

(3)设甲乙丙丁四人所付费用之和为随机变量,求的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下关于线性回归的判断,正确的个数是(  )

①若散点图中所有点都在一条直线附近,则这条直线为回归直线;

②散点图中的绝大多数都线性相关,个别特殊点不影响线性回归,如图中的A,B,C点;

③已知直线方程为=0.50x-0.81,则x=25时,y的估计值为11.69;

④回归直线方程的意义是它反映了样本整体的变化趋势.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +x.
(1)若函数f(x)的图象在(1,f(1))处的切线经过点(0,﹣1),求a的值;
(2)是否存在负整数a,使函数f(x)的极大值为正值?若存在,求出所有负整数a的值;若不存在,请说明理由;
(3)设a>0,求证:函数f(x)既有极大值,又有极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={a1 , a2 , …,am}.若集合A1∪A2∪A3∪…∪An=A,则称A1 , A2 , A3 , …,An为集合A的一种拆分,所有拆分的个数记为f(n,m).
(1)求f(2,1),f(2,2),f(3,2)的值;
(2)求f(n,2)(n≥2,n∈N*)关于n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,AP⊥平面PCDADBCABBCADEF分别为线段ADPC的中点.

(1)求证:AP∥平面BEF

(2)求证:BE⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90100),[100110),[140150]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:

1)求分数在[120130)内的频率;

2)若在同一组数据中,将该组区间的中点值(如:组区间[100110)的中点值为=105)作为这组数据的平均分,据此,估计本次考试的平均分;

3)用分层抽样的方法在分数段为[110130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120130)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;

(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测技改后生产100吨甲产品比技改前少消耗多少吨标准煤.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|﹣|x﹣3|.
(Ⅰ)解不等式f(x)≥1;
(Ⅱ)当﹣9≤x≤4时,不等式f(x)<a成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案