精英家教网 > 高中数学 > 题目详情
如图,正方形ACDE与等腰直角三角形ACB所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F,G分别是线段AE,BC的中点,则AD与GF所成的角的余弦值为( )
A.B.C.D.
A

试题分析:以点为空间坐标系的原点建立坐标系,则,所以,因此,而线线夹角取值范围是,故取正值,A正确.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,AB//CD,AD=DC=CB=a,,四边形ACFE是矩形,且平面平面ABCD,点M在线段EF上.
(1)求证:平面ACFE;
(2)当EM为何值时,AM//平面BDF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图的几何体中,四边形为正方形,四边形为等腰梯形,
(1)求证:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,平面.以为邻边作平行
四边形,连接
(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知二面角,A为垂足,,则异面直线所成角的余弦值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2014·泰安模拟)设a是空间中的一条直线,α是空间中的一个平面,则下列说法正确的是(  )
A.过a一定存在平面β,使得β∥α
B.过a一定存在平面β,使得β⊥α
C.在平面α内一定不存在直线b,使得a⊥b
D.在平面α内一定不存在直线b,使得a∥b

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知棱长为l的正方体中,E,F,M分别是AB、AD、的中点,又P、Q分别在线段上,且,设面面MPQ=,则下列结论中不成立的是(    )

A.面ABCD
B.AC
C.面MEF与面MPQ不垂直
D.当x变化时,不是定直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四面体ABCD,线段AB平面,E,F分别是线段AD和BC的中点,当正四面体绕以AB为轴旋转时,则线段AB与EF在平面上的射影所成角余弦值的范围是(   )
A.[0,]B.[,1]C.[,1]D.[]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是__     ___(写出所有正确命题的编号).

①当时,S为四边形;
②当时,S不为等腰梯形;
③当时,S与的交点R满足;
④当时,S为六边形;
⑤当时,S的面积为.

查看答案和解析>>

同步练习册答案