精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为平行四边形, ,且底面.

(1)证明:平面平面

(2)若的中点,且,求二面角的大小.

【答案】(1)见解析(2)

【解析】试题分析:(1)易证得 ,所以有平面,从而得证;

(2)分别以 轴, 轴, 轴建立空间直角坐标系,分别求得平面的法向量为,平面的一个法向量为,由法向量的所成角可得解.

试题解析:

(1)证明:∵,∴

,∴.

又∵底面,∴.

,∴平面.

平面,∴平面平面.

(2)解:由(1)知, 平面

分别以 轴, 轴, 轴建立空间直角坐标系,如图所示,设,则,令,则

.

,∴.

.

设平面的法向量为

,即

,得.

易知平面的一个法向量为,则

∴二面角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂家拟在2019年举行促销活动,经过调查测算,该产品的年销量(即该厂的年产量)(单位:万件)与年促销费用)(单位:万元)满足为常数)如果不搞促销活动,则该产品的年销量只能是1万件. 已知2019年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分).

(1)将该厂家2019年该产品的利润万元表示为年促销费用万元的函数;

(2)该厂家2019年的年促销费用投入多少万元时,厂家利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AEBF所成角的余弦值为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,

(1)证明:

(2)若,四面体的体积为2,求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,若函数恰有一个零点,求实数的取值范围;

2 时,对任意,有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的图象在点处的切线方程;

(2)若函数的图象与轴有且仅有一个交点,求实数的值;

(3)在(2)的条件下,对任意的,均有成立,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ( 为自然对数的底数).

(Ⅰ)求函数的极值;

(Ⅱ)当时,若直线与曲线没有公共点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆C: 经过点P(1, ),离心率e= ,直线l的方程为x=4.

(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1 , k2 , k3 . 问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案