精英家教网 > 高中数学 > 题目详情

【题目】ABC中,abc分别是角ABC的对边,且2cosAcosC(1tanAtanC)1

1B的大小;

2b,求ABC面积的最大值

【答案】(1);(2)

【解析】试题分析:

(1)先对2cosAcosC(1 tanAtanC)1执行切化弦即将tanAtanC化为,整理得,∴再由三角形,及诱导公式,得,由此可得.

(2)要求ABC面积的最大值,由需求出的最大值.在第一问的基础上,由余弦定理及重要不等式得,又b可得,故

试题解析:

1)由2cosAcosC(1tanAtanC)1

,

2

b

所以当且仅当时, 有最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)

已知函数f(x)=(x2+bx+b) (b∈R)

(1)当b=4时,求f(x)的极值;

(2)若f(x)在区间上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式为
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,甲、乙两位同学要测量河对岸A,B两点间的距离,今沿河岸选取相距40米的C,D两点,测得∠ACB=60°,∠BCD=45°,∠ADC=30°,∠CDB=90°求A,B两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)为定义在R上的奇函数,且在(0,+∞)内是增函数,又f(2)=0,则不等式x5f(x)>0的解集为(
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线y=x2﹣6x+5与坐标轴的交点都在圆C上.
(Ⅰ)求圆C的方程;
(Ⅱ)若圆C与直线x﹣y+a=0交于A,B两点,且CA⊥CB求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+1),g(x)=loga(1﹣x)(a>0且a≠1).
(1)求f(x)+g(x)的定义域;
(2)判断函数f(x)+g(x)的奇偶性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.表是甲流水线样本的频数分布表,图是乙流水线样本的频率分布直方图.

:甲流水线样本的频数分布表

质量指标值

频数

:乙流水线样本频率分布直方图

(Ⅰ)根据图,估计乙流水线生产产品该质量指标值的中位数.

(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了件产品,则甲,乙两条流水线分别生产出不合格品约多少件.

(Ⅲ)根据已知条件完成下面列联表,并回答是否有的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?

甲生产线

乙生产线

合计

合格品

不合格品

合计

附: (其中样本容量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=60°,D是BC上一点,AB=31,BD=20,AD=21.

(1)求cos∠B的值;
(2)求sin∠BAC的值和边BC的长.

查看答案和解析>>

同步练习册答案