【题目】在等腰三角形中,,在线段上,(为常数,且),为定长),则的面积最大值为_______.
【答案】
【解析】
如图所示,以B为原点,BD为x轴建立平面直角坐标系,设A(x,y),y>0,根据题意得到AD=kAB,两边平方得到关系式,利用勾股定理化简后表示出y2,变形后利用二次函数的性质求出y的最大值,进而确定出三角形ABD面积的最大值,根据AD=kAC即可得出三角形ABC面积的最大值.
如图所示,以B为原点,BD为x轴建立平面直角坐标系,设A(x,y),y>0,
∵AB=AC,
∴AD=kAC=kAB,即AD2=k2AB2,
∴(x﹣l)2+y2=k2(x2+y2),
整理得:y2,
∴ymax,
∵BD=l,
∴(S△ABD)max,
则(S△ABC)max(S△ABD)max.
故答案为:
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xcosx﹣sinx,x∈[0, ]
(1)求证:f(x)≤0;
(2)若a< <b对x∈(0, )上恒成立,求a的最大值与b的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,抛物线的方程为.
(1)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,求的极坐标方程;
(2)直线的参数方程是(为参数),与交于两点, ,求的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区年至年农村居民家庭人均纯收入(单位:千元)的数据如表:
年份 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入 | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,分析年至年该地区农村居民家庭人纯收入的变化情况,并预测该地区年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
.
参考数据:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,过点且互相垂直的两条直线分别与圆交于点A,B,与圆交于点C,D.
(1) 若AB=,求CD的长;
(2)若直线斜率为2,求的面积;
(3) 若CD的中点为E,求△ABE面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在公差为d的等差数列{an}中,已知a1=10,且a1 , 2a2+2,5a3成等比数列.
(1)求d,an;
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A万元,则超出部分按2log5(A+1)进行奖励.记奖金y(单位:万元),销售利润x(单位:万元)
(1)写出该公司激励销售人员的奖励方案的函数模型;
(2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com