分析 直接利用新定义,列出方程,转化为函数的零点,利用二次函数的性质求解即可.
解答 解:f(x)=x 即$\frac{2{x}^{2}-a}{x-2a}=x$,
可得:2x2-a=x2-2ax.即x2+2ax-a=0在[-1,1]的范围内有解.
设 g(x)=x2+2ax-a=0,如果只有一个解:g(-1)•g(1)≤0,可得(1-3a)(1+a)≤0,
解得a≤-1或a$≥\frac{1}{3}$,
如果有两个解:可得$\left\{\begin{array}{l}-1≤-a≤1\\ g(a)≤0\\ g(-1)≥0\\ g(1)≥0\end{array}\right.$,即$\left\{\begin{array}{l}-1≤-a≤1\\ 3{a}^{2}-a≤0\\ 1-3a≥0\\ 1+a≥0\end{array}\right.$,解得:a∈$[0,\frac{1}{3}]$
综上:a∈(-∞,-1]∪[1,+∞).
点评 本题考查新定义的应用,函数与方程的关系,二次函数的性质的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 一条直线垂直于三角形的两条边,则该直线与三角形所在平面垂直 | |
B. | 一条直线垂直于梯形的两条边,则该直线与梯形所在平面垂直 | |
C. | 一条直线垂直于平面内无数多条直线,则该直线与平面垂直 | |
D. | 两条平行线中一条垂直于一个平面,另一条不一定垂直于这个平面 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a=4,b=3 | B. | a=-4,b=3 | C. | a=±4,b=3 | D. | a=4,b=±3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{n}{2(n+1)}$ | B. | $\frac{1}{2n(n+1)}$ | C. | $\frac{2}{n(n+1)}$ | D. | $\frac{2n}{n+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com