分析 变形,利用基本不等式,分别进行判断,即可得出结论.
解答 解:①若a-2b+3c=0,则2b=a+3c≥2$\sqrt{3ac}$,∴b2≥3ac,∴$\frac{{b}^{2}}{ac}$≥3,∴$\frac{{b}^{2}}{ac}$的最小值是3,正确;
②设t=a+2b,则t>0,由a+2b+2ab=8得2ab=8-(a+2b)≤$(\frac{a+2b}{2})^{2}$,即8-t≤$\frac{{t}^{2}}{4}$,整理得t2+4t-32≥0,解得t≥4或t≤-8(舍去),即a+2b≥4,所以a+2b的最小值是4.正确;
③∵a,b,c>0,∴a+c>0,a+b>0,∵a(a+b+c)+bc=a(a+b)+ac+bc=a(a+b)+c(a+b)=(a+c)(a+b)=4,∴2a+b+c=(a+b)+(a+c)≥2$\sqrt{(a+c)(a+b)}$=4,∴2a+b+c的最小值为4,不正确;
④若a2+b2+c2=4,则4=a2+$\frac{1}{2}$b2+$\frac{1}{2}$b2+c2≥$\sqrt{2}$ab+$\sqrt{2}$bc,∴ab+bc≤2$\sqrt{2}$,∴ab+bc的最大值是2$\sqrt{2}$,正确
综上所述,正确结论的序号是①②④.
故答案为:①②④.
点评 本题考查基本不等式的运用,考查学生分析解决问题的能力,正确运用基本不等式是关键.
科目:高中数学 来源: 题型:选择题
A. | 充要条件 | B. | 既不充分也不必要条件 | ||
C. | 充分不必要条件 | D. | 必要不充分条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | -2 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 向左平行移动$\frac{π}{3}$个单位 | B. | 向左平行移动$\frac{π}{9}$个单位 | ||
C. | 向右平行移动$\frac{π}{3}$个单位 | D. | 向右平行移动$\frac{π}{9}$个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com