精英家教网 > 高中数学 > 题目详情

把命题“方程x2-4=0的根为x=±2”改成“若p则q”的形式为


  1. A.
    若x2-4=0,则x=2且x=-2
  2. B.
    若x2-4=0,则x=2或x=-2
  3. C.
    若x=±2,则x2-4=0
  4. D.
    以上都不对
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下面有4个命题:
①当(1+4k2)x2+8kmx+4m2-4=0时,2x+
1
2x
的最小值为2;
②若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的一条渐近线方程为y=
3
x
,且其一个焦点与抛物线y2=8x的焦点重合,则双曲线的离心率为2;
③将函数y=cos2x的图象向右平移
π
6
个单位,可以得到函数y=sin(2x-
π
6
)
的图象;
其中 错误命题的序号为
 
(把你认为错误命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

15、已知函数f(x)的定义域为R,且对于任意x∈R,都有f(x)=f(-x)及f(x+4)=f(x)+f(2)成立.当x1、x2∈[0,2]且x1≠x2时,都有[f(x1)-f(x2)](x1-x2)>0成立.现给出下列四个结论:
①f(2)=0;②函数f(x)在区间[-6,-4]上为增函数;③直线x=-4是函数f(x)的一条对称轴;④方程f(x)=0在区间[-6,6]上有4个不同的实根.
其中正确命题的序号是
①③④
. (把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
(1)函数f(x)=tanx有无数个零点;
(2)若关于x的方程((
1
2
)|x|-m=0
有解,则实数m的取值范围是(0,1];
(3)把函数f(x)=2sin2x的图象沿x轴方向向左平移
π
6
个单位后,得到的函数解析式可以表示成f(x)=2sin2(x+
π
6
);
(4)函数f(x)=
1
2
sinx+
1
2
|sinx|的值域是[-1,1];
(5)已知函数f(x)=2cosx,若存在实数x1,x2,使得对任意的实数x都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为2π.
其中正确的命题有
3
3
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江一模)下列四个论述:
(1)线性回归方程y=bx+a必过点(
.
x
.
y

(2)已知命题p:“?x∈R,x2≥0“,则命题¬p是“?x0∈R,
x
2
0
<0“
(3)函数f(x)=
x2(x≥1)
x(x<1)
在实数R上是增函数;
(4)函数f(x)=sinx+
4
sinx
的最小值是4
其中,正确的是
(1)(2)(3)
(1)(2)(3)
(把所有正确的序号都填上).

查看答案和解析>>

同步练习册答案