精英家教网 > 高中数学 > 题目详情
2.在平面直角坐标系xOy中,圆x2+y2-6x+8y+21=0的半径为2.

分析 利用圆的半径的求法.

解答 解:圆x2+y2-6x+8y+21=0的半径:
r=$\frac{1}{2}\sqrt{36+64-4×21}$=2.
故答案:2.

点评 本题考查圆的半径的求法,是基础题,解题时要认真审题,注意圆的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2+ax+b,a,b∈R,A={x|f(x)=x,x∈R},B={x|f[f(x)]=x,x∈R}
(1)写出集合A与B之间的关系,并证明;
(2)当A={-1,3}时,用列举法表示集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知:p:y=-(21+8m-m2x为减函数,q:x2-2x+1-m2≤0(m>0),若?p是?q的必要而不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等比数列{an}的公比为3,且a1+a3=10,则a2a3a4的值为(  )
A.27B.81C.243D.729

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)=$\sqrt{|x+1|+|x+2|-5}$.
(1)求函数f(x)的定义域A;
(2)设B={x|-1<x<2},当实数a、b∈(B∩∁RA)时,证明:$\frac{|a+b|}{2}<|1+\frac{ab}{4}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线y=x+m与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1有两个公共点,则m的取值范围是(  )
A.(-5,5)B.(-2,2)C.(-$\sqrt{7}$,$\sqrt{7}$)D.(-$\sqrt{3}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知0≤α≤π,0≤β≤$\frac{π}{4}$,且α+β=$\frac{2π}{3}$,求y=$\frac{1-cos(π-2α)}{cot\frac{α}{2}-tan\frac{α}{2}}$-cos2($\frac{π}{4}$-β)的最大值,并求出相应的α、β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.以线段两个端点(3,8)和(7,4)为直径的圆的方程(x-5)2+(y-6)2=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,内角A、B、C的对边分别为a、b、c,且c=2,b=$\sqrt{2}$a,则△ABC面积的最大值为2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案