精英家教网 > 高中数学 > 题目详情
已知命题p方程2x2+ax-a2=0在[-1,1]上有解;命题q:只有一个实数x0满足不等式x02+2ax0+2a≤0,若命题“p∨q”是假命题,求实数a的取值范围.
分析:分别求出命题p,q成立的等价条件,利用命题“p∨q”是假命题,求实数a的取值范围.
解答:解:由2x2+ax-a2=0得(2x-a)(x+a)=0,∴x=
a
2
或x=-a

∴当命题p为真命题时|
a
2
|≤1或|-a|≤1∴|a|≤2
.即-2≤a≤2,
又“只有一个实数x0满足
x
2
0
+2ax0+2a≤0
”,
即抛物线y=x2+2ax+2a与x轴只有一个交点,
∴△=4a2-8a=0,
∴a=0或a=2.
∴当命题q为真命题时,a=0或a=2.
∵命题“p∨q”为假命题,∴p,q同时为假命题,
a>2或a<-2
a≠0且a≠2

∴a>2或a<-2.
∴实数a的取值范围的取值范围为(-∞,-2)∪(2,+∞).
点评:本题主要考查复合命题真假的应用,求出命题成立的等价条件是解决此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知命题p:2x2-3x+1≤0和命题q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,求实数a的取值范围.
(2)已知命题s:方程x2+(m-3)x+m=0的一根在(0,1)内,另一根在(2,3)内.命题t:函数f(x)=ln(mx2-2x+1)的定义域为全体实数.若s∨t为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知命题p:方程x2+(m-3)x+1=0无实根,命题q:方程x2+
y2m-1
=1是焦点在y轴上的椭圆.若¬p与p∧q同时为假命题,求m的取值范围.
(2)已知命题p:2x2-3x+1≤0和命题q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知命题p:2x2-3x+1≤0和命题q:x2-(2a+1)x+a(a+1)≤0,若?p是?q的必要不充分条件,求实数a的取值范围.
(2)已知命题s:方程x2+(m-3)x+m=0的一根在(0,1)内,另一根在(2,3)内.命题t:函数f(x)=ln(mx2-2x+1)的定义域为全体实数.若s∨t为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省深圳市第二高级中学高三(上)第一次月考数学试卷(文科)(解析版) 题型:解答题

(1)已知命题p:2x2-3x+1≤0和命题q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,求实数a的取值范围.
(2)已知命题s:方程x2+(m-3)x+m=0的一根在(0,1)内,另一根在(2,3)内.命题t:函数f(x)=ln(mx2-2x+1)的定义域为全体实数.若s∨t为真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案