分析 由正弦定理化简$\frac{a+sinA}{b+sinB}$=$\frac{3}{2}$可得:3sinB=2sinA①,由三角函数恒等变换的应用化简tan$\frac{A+B}{2}$=2sinC,解得cosC=$\frac{1}{2}$,C为三角形内角,可得C=$\frac{π}{3}$.由①利用两角差的正弦函数公式及同角三角函数关系式即可解得tanB=$\frac{sinB}{cosB}$=$\frac{\sqrt{3}}{2}$.
解答 解:∵由正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R$,
∴若$\frac{a+sinA}{b+sinB}$=$\frac{3}{2}$,则3b-2a=2sinA-3sinB,可得:6RsinB-4RsinA=2R(3sinB-2sinA)=-(3sinB-2sinA),
∴可得:3sinB=2sinA①,
∵tan$\frac{A+B}{2}$=$\frac{sin\frac{A+B}{2}}{cos\frac{A+B}{2}}$=2sinC=2sin(A+B)=4sin$\frac{A+B}{2}$cos$\frac{A+B}{2}$,解得:cos2$\frac{A+B}{2}$=$\frac{1}{4}$,
∴$\frac{1+cos(A+B)}{2}$=$\frac{1}{4}$,解得:cosC=-cos(A+B)=$\frac{1}{2}$,C为三角形内角,可得C=$\frac{π}{3}$.
∴由①可得:3sinB=2sin($\frac{2π}{3}-$B)=$\sqrt{3}$cosB+sinB,解得:tanB=$\frac{sinB}{cosB}$=$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{\sqrt{3}}{2}$.
点评 本题主要考查了正弦定理,三角形内角和定理,三角函数恒等变换的应用,熟练掌握和灵活应用相关公式定理是解题的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com