【题目】设圆的方程为x2+y2=4,过点M(0,1)的直线l交圆于点A、B,O是坐标原点,点P为AB的中点,当l绕点M旋转时,求动点P的轨迹方程.
【答案】x2+(y-)2= .
【解析】试题分析:先设点P的坐标为(x,y)、A(x1,y1)、B(x2,y2),将A,B点的坐标代入圆的方程中,两式相减,可得,再由已知条件求出轨迹方程。
试题解析:设点P的坐标为(x,y)、A(x1,y1)、B(x2,y2).
因为A、B在圆上,所以x+y=4,x+y=4,
两式相减得x-x+y-y=0,
所以(x1-x2)(x1+x2)+(y1-y2)(y1+y2)=0.
当x1≠x2时,有x1+x2+(y1+y2)·=0,①
并且②
将②代入①并整理得x2+(y-)2=.③
当x1=x2时,点A、B的坐标为(0,2)、(0,-2),这时点P的坐标为(0,0)也满足③.
所以点P的轨迹方程为x2+(y-)2=.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线(θ为参数),将上的所有点的横坐标、纵坐标分别伸长为原来的和2倍后得到曲线,以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(1)试写出曲线的极坐标方程与曲线的参数方程;
(2)在曲线上求一点,使点到直线的距离最小,并求此最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程.
已知曲线在直角坐标系下的参数方程为(为参数).以为极点, 轴的非负半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)直线的极坐标方程是,射线与曲线交于点,与直线交于,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的通项公式是.
(1)判断是否是数列中的项;
(2)试判断数列中的各项是否都在区间内;
(3)试判断在区间内是否有无穷数列中的项?若有,是第几项?若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区以“绿色出行”为宗旨开展“共享单车”业务.该地区某高级中学一兴趣小组由20名高二级学生和15名高一级学生组成,现采用分层抽样的方法抽取7人,组成一个体验小组去市场体验“共享单车”的使用.问:
(Ⅰ)应从该兴趣小组中抽取高一级和高二级的学生各多少人;
(Ⅱ)已知该地区有, 两种型号的“共享单车”,在市场体验中,该体验小组的高二级学生都租型车,高一级学生都租型车.
(1)如果从组内随机抽取3人,求抽取的3人中至少有2人在市场体验过程中租型车的概率;
(2)已知该地区型车每小时的租金为1元, 型车每小时的租金为1.2元,设为从体验小组内随机抽取3人得到的每小时租金之和,求的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2009年为第1年,且前4年中,第x年与年产量f(x) 万件之间的关系如下表所示:
x | 1 | 2 | 3 | 4 |
f(x) | 4.00 | 5.58 | 7.00 | 8.44 |
若f(x)近似符合以下三种函数模型之一:f(x)=ax+b,f(x)=2x+a,f(x)=logx+a.
(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;
(2)因遭受某国对该产品进行反倾销的影响,2015年的年产量比预计减少30%,试根据所建立的函数模型,确定2015年的年产量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的通项公式是.
(1)判断是否是数列中的项;
(2)试判断数列中的各项是否都在区间内;
(3)试判断在区间内是否有无穷数列中的项?若有,是第几项?若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为(为参数),圆的极坐标方程为.
(1)求直线的普通方程与圆的直角坐标方程;
(2)设圆与直线交于两点,若点的直角坐标为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com