精英家教网 > 高中数学 > 题目详情

【题目】设圆的方程为x2y24过点M(0,1)的直线l交圆于点ABO是坐标原点PAB的中点l绕点M旋转时求动点P的轨迹方程.

【答案】x2(y-)2 .

【解析】试题分析:先设点P的坐标为(xy)A(x1y1)B(x2y2)将A,B点的坐标代入圆的方程中两式相减可得再由已知条件求出轨迹方程

试题解析:设点P的坐标为(xy)A(x1y1)B(x2y2)

因为AB在圆上,所以xy4xy4

两式相减得xxyy0

所以(x1x2)(x1x2)(y1y2)(y1y2)0.

x1x2x1x2(y1y20

并且

将②代入①并整理得x2(y)2.

x1x2时,点AB的坐标为(0,2)(0,-2),这时点P的坐标为(0,0)也满足③.

所以点P的轨迹方程为x2(y)2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线θ为参数),将上的所有点的横坐标、纵坐标分别伸长为原来的2倍后得到曲线,以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线

1)试写出曲线的极坐标方程与曲线的参数方程;

2)在曲线上求一点,使点到直线的距离最小,并求此最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程.

已知曲线在直角坐标系下的参数方程为为参数).以为极点, 轴的非负半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)直线的极坐标方程是,射线与曲线交于点,与直线交于,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车托运重量为P(kg)的货物时托运每千米的费用(单位)标准为

y=

试编写一程序求行李托运费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的通项公式是

(1)判断是否是数列项;

(2)试判断数列中的项是否都在区间内;

(3)试判断在区间是否有无数列中的项?若有是第几项?若没有请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区以“绿色出行”为宗旨开展“共享单车”业务.该地区某高级中学一兴趣小组由20名高二级学生和15名高一级学生组成,现采用分层抽样的方法抽取7人,组成一个体验小组去市场体验“共享单车”的使用.问:

(Ⅰ)应从该兴趣小组中抽取高一级和高二级的学生各多少人;

(Ⅱ)已知该地区有, 两种型号的“共享单车”,在市场体验中,该体验小组的高二级学生都租型车,高一级学生都租型车.

(1)如果从组内随机抽取3人,求抽取的3人中至少有2人在市场体验过程中租型车的概率;

(2)已知该地区型车每小时的租金为1元, 型车每小时的租金为1.2元,设为从体验小组内随机抽取3人得到的每小时租金之和,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2009年为第1年,且前4年中,第x年与年产量f(x) 万件之间的关系如下表所示:

x

1

2

3

4

f(x)

4.00

5.58

7.00

8.44

f(x)近似符合以下三种函数模型之一:f(x)=axbf(x)=2xaf(x)=logxa.

(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;

(2)因遭受某国对该产品进行反倾销的影响,2015年的年产量比预计减少30%,试根据所建立的函数模型,确定2015年的年产量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的通项公式是

(1)判断是否是数列项;

(2)试判断数列中的项是否都在区间内;

(3)试判断在区间是否有无数列中的项?若有是第几项?若没有请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为为参数),圆的极坐标方程为.

(1)求直线的普通方程与圆的直角坐标方程;

(2)设圆与直线交于两点,若点的直角坐标为,求的值.

查看答案和解析>>

同步练习册答案