精英家教网 > 高中数学 > 题目详情
2.数列{an}的首项为3,{bn}为等差数列,且bn=an+1-an(n∈N*).若则b2=-4,b5=2,则a8=(  )
A.0B.3C.8D.11

分析 利用等差数列的通项公式可得bn=an+1-an=2n-8,再利用“累加求和”:an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1,即可得出.

解答 解:设等差数列{bn}的公差为d,∵b2=-4,b5=2,
∴$\left\{\begin{array}{l}{{b}_{1}+d=-4}\\{{b}_{1}+4d=2}\end{array}\right.$,解得b1=-6,d=2,
∴bn=-6+2(n-1)=2n-8.
∴bn=an+1-an=2n-8,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=[2(n-1)-8]+[2(n-2)-8]+…+(2-8)+3
=$\frac{(n-1)(-6+2n-2-8)}{2}$+3
=n2-9n+11.
∴a8=82-9×8+11
=3.
故选:B.

点评 本题考查了递推关系的应用、等差数列的通项公式、“累加求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知抛物线C的方程:x2=2py(p>0).
(1)设AB是过抛物线焦点F的弦,A(x1,y1),B(x2,y2).
①证明:y1y2为定值,并求出此定值;
②证明$\frac{1}{|A{F}_{1}|}$+$\frac{1}{|A{F}_{2}|}$为定值,并求出此定值:
③试判断以AB为直径的圆与准线的位置关系并加以证明:
④证明:过A,B分别作抛物线的切线,则两条切线的交点T一定在准线上:
(2)当p=2时,直线y=1交抛物线于A.B两点.已知P(0,-1),Q(x0,y0)(-2≤x0≤2)是抛物线C上一动点,抛物线C在点Q处的切线为l,l与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比:
(3)当p=$\frac{1}{2}$时,若抛物线C上存在关于直线l:y=kx+1对称的两点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一个几何体的三视图如图所示,则这个几何体的体积为64-$\frac{16}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线l1经过不同两点A(3,a)、B(a-2,3),直线l2经过不同两点A(3,a)、C(6,5),且l1⊥l2,则实数a的值是(  )
A.0B.5C.-5D.0或5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图输入a0=0,a1=1,a2=2,a3=3,x0=-2,它输出的结果S是(  )
A.-18B.6C.-3D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图正方形ABCD的边长为ABCD的边长为$2\sqrt{2}$,四边形BDEF是平行四边形,BD与AC交于点G,O为GC的中点,$FO=\sqrt{3},且FO⊥$平面ABCD.
(I)求证:AE∥平面BCF;
(Ⅱ)若$FO=\sqrt{3}$,求证CF⊥平面AEF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.sin160°cos10°+cos20°sin10°=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若f(x)是定义在(0,+∞),对一切x,y>0,满足f(xy)=f(x)+f(y),且当x>1时,f(x)>0
(1)证明:f(x)在(0,+∞)是增函数;
(2)若f(2)=1,解不等式f(x+3)-f($\frac{1}{3}$)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知椭圆的方程为$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{{m}^{2}}$=1,焦点在x轴上,则m的取值范围是(  )
A.-4≤m≤4B.-4<m<4且m≠0C.m>4或m<-4D.0<m<4

查看答案和解析>>

同步练习册答案