精英家教网 > 高中数学 > 题目详情

【题目】某研究所计划利用宇宙飞船进行新产品搭载试验,计划搭载若干件新产品A,B,该研究所要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查得到的有关数据如表:

每件A产品

每件B产品

研制成本、搭载试验

费用之和(万元)

20

30

产品重量(千克)

10

5

预计收益(万元)

80

60

已知研制成本、搭载试验费用之和的最大资金为300万元,最大搭载重量为110千克,则如何安排这两种产品进行搭载,才能使总预计收益达到最大,求最大预计收益是多少.

【答案】960万元

【解析】

根据条件列约束条件与目标函数,作可行域,再根据目标函数所表示的直线,结合图像得取最值时最优解.

设搭载A产品x,B产品y,则预计收益z=80x+60y,由题意知,

作出可行域如图所示.

作出直线l:80x+60y=0并平移,由图形知,当直线经过点M时,z取得最大值,由解得即M(9,4).

所以zmax=80×9+60×4=960(万元),所以搭载9件A产品,4件B产品,才能使总预计收益达到最大,最大预计收益为960万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某家具厂生产一种办公桌,每张办公桌的成本为100元,出厂单价为160元,该厂为鼓励销售商多订购,决定一次订购量超过100张时,每超过一张,这批订购的全部办公桌出厂单价降低1元.根据市场调查,销售商一次订购量不会超过160张.

(1)设一次订购量为张,办公桌的实际出厂单价为元,求关于的函数关系式

(2)当一次性订购量为多少时,该家具厂这次销售办公桌所获得的利润最大?其最大利润是多少元?(该家具厂出售一张办公桌的利润=实际出厂单价-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为庆祝中国人民解放军建军90周年,南昌市某校打算组织高一6个班级参加红色旅游活动,旅游点选取了八一南昌起义纪念馆,南昌新四军军部旧址等5个红色旅游景点.若规定每个班级必须参加且只能游览1个景点,每个景点至多有两个班级游览,则这6个班级中没有班级游览新四军军部旧址的不同游览方法数为( )

A. 3600 B. 1080 C. 1440 D. 2520

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

Ⅰ)讨论函数上的单调性;

Ⅱ)证明:恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)ax2bxc的图象与x轴有两个不同的交点,若f(c)00<x<c时,f(x)>0

(1)证明:f(x)0的一个根;

(2)试比较c的大小;

(3)证明:-2<b<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列函数的解析式:

(1)已知f(x)是二次函数,且f(0)=2,f(x+1)-f(x)=x-1,求f(x);

(2)已知3f(x)+2f(-x)=x+3,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合P={x|x2-8x-20≤0},S={x||x-1|≤m}.

(1)若(PS)P,求实数m的取值范围;

(2)是否存在实数m,使得“xP”是“xS”的充要条件?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某政府机关在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解职工对政府机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)

(1)应收集多少位女生样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为该校学生的每周平均体育运动时间与性别有关.

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

同步练习册答案