精英家教网 > 高中数学 > 题目详情
7.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为$10\sqrt{6}$m(如图所示),则旗杆的高度为(  )
A.10mB.30mC.10mD.10m

分析 作图,分别求得∠ABC,∠ACB和∠BAC,然后利用正弦定理求得AC,最后在直角三角形ACD中求得AD.

解答 解:如图,
依题意知∠ABC=30°+15°=45°,∠ACB=180°-60°-15°=105°,
∴∠BAC=180°-45°-105°=30°,
由正弦定理知AC=$\frac{BC}{sin∠BAC}$•sin∠ABC=20$\sqrt{3}$(m),
在Rt△ACD中,AD=$\frac{\sqrt{3}}{2}$•AC=$\frac{\sqrt{3}}{2}$×20$\sqrt{3}$=30(m),
即旗杆的高度为30m.
故选B.

点评 本题主要考查了解三角形的实际应用.结合了正弦定理等基础知识,考查了学生分析和推理的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.中国乒乓球队备战里约奥运会热身赛暨选拨赛于2016年7月14日在山东威海开赛,种子选手M与B1,B2,B3三位非种子选手分别进行一场对抗赛,按以往多次比赛的统计,M获胜的概率分别为$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,且各场比赛互不影响.
(1)若M至少获胜两场的概率大于$\frac{7}{10}$,则M入选征战里约奥运会的最终大名单,否则不予入选,问M是否会入选最终的大名单?
(2)求M获胜场数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图是某条公共汽车线路收支差额y与乘客量x的图象(实线),由于目前本线路亏损,公司有关人员提出两种扭亏为盈的方案(虚线),这两种方案分别是(  )
A.方案①降低成本,票价不变,方案②提高票价而成本不变;
B.方案①提高票价而成本不变,方案②降低成本,票价不变;
C.方案①降低成本,票价提高,方案②提高票价而成本不变;
D.方案①提高成本,票价不变,方案②降低票价且成本降低

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a,b,c分别为△ABC三个内角A,B,C的对边,(sinA+sinB)(a-b)=(sinC-sinB)c,S△ABC=$\sqrt{3}$,c=4b,则函数f(x)=bx2-ax+c的零点个数为(  )
A.0B.1C.2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.定义行列式运算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3.若将函数f(x)=$|\begin{array}{l}{-sinx}&{cosx}\\{1}&{-\sqrt{3}}\end{array}|$的图象向左平移m(m>0)个单位后,所得图象对应的函数为奇函数,则m的最小值是$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,若sin2A=sinB•sinC且(b+c+a)(b+c-a)=3bc,则该三角形的形状是等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2sin(ωx-$\frac{π}{3}$),(ω>0)的最小正周期为π.
(1)求函数f(x)的单调减区间;
(2)若h(x)=f(x)-b,在x∈[0,$\frac{π}{2}$]上含有2个零点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|x2-2x-3≥0},B={x|y=log2(x-1)},则(∁RA)∩B=(  )
A.(1,3)B.(-1,3)C.(3,5)D.(-1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“?x∈R,sinx>0”的否定是(  )
A.?x∈R,sinx<0B.?x∈R,sinx≤0C.?x∈R,sinx≤0D.?x∈R,sinx<0

查看答案和解析>>

同步练习册答案