精英家教网 > 高中数学 > 题目详情

【题目】某工厂有工人1000名,为了提高工人的生产技能,特组织工人参加培训.其中250名工人参加过短期培训(称为类工人),另外750名工人参加过长期培训(称为类工人).现从该工厂的工人中共抽查了100名工人作为样本,调查他们的生产能力(生产能力是指工人一天加工的零件数),得到类工人生产能力的茎叶图(图1),类工人生产能力的频率分布直方图(图2).

(1)在样本中求类工人生产能力的中位数,并估计类工人生产能力的平均数(同一组中的数据用该组区间的中点值作代表);

(2)若规定生产能力在内为能力优秀,现以样本中频率作为概率,从1000名工人中按分层抽样共抽取名工人进行调查,请估计这名工人中的各类人数,完成下面的列联表.

若研究得到在犯错误的概率不超过的前提下,认为生产能力与培训时间长短有关,则的最小值为多少?

参考数据:

参考公式: ,其中.

【答案】(1)132.6;(2)360

【解析】试题分析:(1)由茎叶图知A类工人生产能力的中位数,由频率分布直方图,估计出B类工人生产能力的平均数;

2)列出能力与培训的列联表,计算卡方,结合表格作出判断.

试题解析:

(1)由茎叶图知类工人生产能力的中位数为123,由频率分布直方图,估计类工人生产能力的平均数为

(2)由(1)及所给数据得能力与培训的列联表如下:

由上表得

解得,又人数必须取整,

的最小值为360.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)若函数有两个极值点 ,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣2|.
(1)解不等式f(x)+f(x+1)≥5;
(2)若|a|>1且 ,证明:|b|>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是海岸线上的三个集镇, 位于的正南方向处, 位于的北偏东60°方向处;

(1)为了缓解集镇的交通压力,拟在海岸线上分别修建码头,开辟水上直达航线,使 .勘测时发现以为圆心, 为半径的扇形区域为浅水区,不适宜船只航行,问此航线是否影响船只航行?

(2)为了发展经济需要,政府计划填海造陆,建造一个商业区(如图四边形所示),其中 ,求该商业区的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)当时,函数恒有意义,求实数的取值范围;

(2)是否存在这样的实数,使得函数在区间上为减函数,并且最大值为1?如果存在,试求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 都是边长为2的等边三角形,设在底面的投影为.

(1)求证: 的中点;

(2)证明:

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数满足,且

求函数的解析式;

在区间上的最大值和最小值;

时,恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海关对同时从三个不同地区进口的某种商品进行随机抽样检测已知从三个地区抽取的商品件数分别是50,150,100.检测人员再用分层抽样的方法从海关抽样的这些商品中随机抽取6件样品进行检测.

1)求这6件样品中,来自各地区商品的数量

2)若在这6件样品中随机抽取2件送往另一机构进行进一步检测,求这2件样品来自相同地区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=|x+1|﹣|2﹣x|.
(1)解不等式f(x)<0;
(2)若m,n∈R+ ,求证:n+2m﹣f(x)>0恒成立.

查看答案和解析>>

同步练习册答案