精英家教网 > 高中数学 > 题目详情

2 + l g a (    )

(A) 3                (B) 4           C) 5            (D) 6

 

答案:B
提示:

= (2 + l g a )( l g al g100 )

= 4

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知点F(0,1),直线L:y=-2,及圆C:x2+(y-3)2=1.
(1)若动点M到点F的距离比它到直线L的距离小1,求动点M的轨迹E的方程;
(2)过点F的直线g交轨迹E于G(x1,y1)、H(x2,y2)两点,求证:x1x2 为定值;
(3)过轨迹E上一点P作圆C的切线,切点为A、B,要使四边形PACB的面积S最小,求点P的坐标及S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,离心率e=
1
2
,P1为椭圆上一点,满足
F1F2
P1F2
=0,
P1F1
P1F2
=
9
4
,斜率为k的直线l 过左焦点F1且与椭圆的两个交点为P、Q,与y轴交点为G,点Q分有向线段
GF1
所成的比为λ.
(I) 求椭圆C的方程;
(II) 设线段PQ中点R在左准线上的射影为H,当1≤λ≤2时,求|RH|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(3,0)及双曲线E:-=1,若双曲线E的右支上的点Q到点B(m,0)(m≥3)距离的最小值为|AB|.?

(1)求m的取值范围,并指出当m变化时点B的轨迹G.

(2)轨迹G上是否存在一点D,它在直线y=x上的射影为P,使得·=·?若存在,试指出双曲线E的右焦点F分向量所成的比;若不存在,请说明理由.

                 

(3)当m为定值时,过轨迹G上的点B(m,0)作一条直线l与双曲线E的右支交于不同的两点,且与直线y=x,y=-x分别交于M,N两点,求△MON周长的最小值.

查看答案和解析>>

科目:高中数学 来源:2011年湖南省益阳市沅江市高三质量检测试卷3(理科)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,离心率e=,P1为椭圆上一点,满足=0,=,斜率为k的直线l 过左焦点F1且与椭圆的两个交点为P、Q,与y轴交点为G,点Q分有向线段所成的比为λ.
(I) 求椭圆C的方程;
(II) 设线段PQ中点R在左准线上的射影为H,当1≤λ≤2时,求|RH|的取值范围.

查看答案和解析>>

同步练习册答案