精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以坐标原点为中心,以坐标轴为对称轴的帮圆C经过点M(2,1),N.

(1)求椭圆C的标准方程;

(2)经过点M作倾斜角互补的两条直线,分别与椭圆C相交于异于M点的AB两点,当△AMB面积取得最大值时,求直线AB的方程.

【答案】(1)

(2)

【解析】

1)设椭圆C的方程为).

根据椭圆过两点,代入得到方程组,解得.

(2)由直线AMBMAB的斜率存在,故.设它们的斜率分别为k.

,直线AB的方程为.联立直线与椭圆方程,消元列出韦达定理,由.即. 即可解得,或.分别代入检验,再用弦长公式及点到直线的距离公式,表示出三角形的面积,利用基本不等式求最值.

解:(1)设椭圆C的方程为).

∵点N在椭圆C上,

.解得.

∴椭圆C的标准方程为.

(2)∵点AB为椭圆上异于M的两点,且直线AMBM的倾斜角互补,

∴直线AMBMAB的斜率存在.设它们的斜率分别为k.

,直线AB的方程为.

.

.

,消去y,得.

,得.

.

.

.

.

,或.

∵点AB为椭圆上异于M的两点,

∴当时,直线AB的方程为,不合题意,舍去.

∴直线AB的斜率为.

,点M到直线AB的距离为

的面积为.

当且仅当时,的面积取得最大值,此时.

满足.

∴直线AB的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的右焦点为F(2,0),过点F的直线交椭圆于MN两点且MN的中点坐标为

(Ⅰ)求椭圆C的方程;

(Ⅱ)设直线l不经过点P(0,b)且与C相交于AB两点,若直线PA与直线PB的斜率的和为1,试判断直线 l是否经过定点,若经过定点,请求出该定点;若不经过定点,请给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲、乙、丙、丁、戌5人参加社区志愿者服务活动,每人从事团购、体温测量、进出人员信息登记、司机四项工作之一,每项工作至少有一人参加.若甲、乙不会开车但能从事其他三项工作,丙、丁、戌都能胜任四项工作,则不同安排方案的种数是(

A.234B.152C.126D.108

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知从甲地到乙地的公路里程约为240(单位:km.某汽车每小时耗油量Q(单位:L)与速度x(单位:)()的关系近似符合以下两种函数模型中的一种(假定速度大小恒定):①,②,经多次检验得到以下一组数据:

x

0

40

60

120

Q

0

20

1)你认为哪一个是符合实际的函数模型,请说明理由;

2)从甲地到乙地,这辆车应以多少速度行驶才能使总耗油量最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的体积为1.在侧棱上取一点,使,然后在上取一点,使,继续在上取一点,使……按上述步骤,依次得到点,记三棱锥的体积依次构成数列,数列的前项和.

1)求数列的通项公式;

2)记为数列的前项和,若不等式对一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若实数满足,则称的不动点.已知函数

,其中,为常数。

(1)若,求函数的单调递增区间;

(2)若时,存在一个实数,使得既是的不动点,又是的极值点,求实数的值;

(3)证明:不存在实数组,使得互异的两个极值点均为不动点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年国庆黄金周旅游市场依旧火爆.一旅行社为某旅行团包机旅游,其中旅行社的包机费15000元,旅行团中每人的飞机票按以下方式与旅行社结算:若旅行团人数不超过35人,飞机票每张800元;若旅行团人数多于35人,则给予如下优惠:每多1每张机票减少10,但旅行团的人数最多不超过60人,记旅行团人数为每个人的机票钱为y.

1)写出的关系式.

2)求旅行社获得的利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域为R.若存在与x无关的正常数M,使|f(x)|≤ M|x|对一切实数x均成立,则称f(x)为有界泛函.则函数:① f(x)=-3x,② f(x)=x2,③ f(x)=sin2x,④ f(x)=2x,⑤ f(x)=xcosx中,属于有界泛函的有____________.(填上所有正确的番号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是古希腊数学家阿基米德用平衡法求球的体积所用的图形.此图由正方形、半径为的圆及等腰直角三角形构成,其中圆内切于正方形,等腰三角形的直角顶点与的中点重合,斜边在直线上.已知的中点,现将该图形绕直线旋转一周,则阴影部分旋转后形成的几何体积为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案