精英家教网 > 高中数学 > 题目详情
10.在△ABC中,已知内角A、B、C所对的边分别为a、b、c,已知$\overrightarrow{m}$=(cosB,cosC),$\overrightarrow{n}$=(2a+c,b)且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)若b=$\sqrt{13}$,a+c=4,求△ABC的面积.
(2)y=sin2A+sin2C的取值范围.

分析 (1)根据向量垂直的坐标公式进行化简求出B的大小,结合三角形的面积公式进行求解即可.
(2)利用三角函数的倍角公式结合两角和差的正弦公式,以及三角函数的性质进行求解即可.

解答 解:(1)∵$\overrightarrow{m}$⊥$\overrightarrow{n}$,
∴$\overrightarrow{m}$•$\overrightarrow{n}$=cosB(2a+c)+bcosC=0,
即2acosB+ccosB+bcosC=0,
由正弦定理得2sinAcosB+sinCcosB+sinBcosC=0,
即2sinAcosB+sin(B+C)=0,
即2sinAcosB+sinA=0,
∴2cosB+1=0,则cosB=-$\frac{1}{2}$,
则B=$\frac{2π}{3}$,
若b=$\sqrt{13}$,a+c=4,
则b2=a2+c2-2accosB,
即13=(a+c)2-2ac+ac=16-ac,
则ac=3,
则△ABC的面积S=$\frac{1}{2}$acsinB=$\frac{1}{2}×3×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$.
(2)∵B=$\frac{2π}{3}$,∴A+C=$\frac{π}{3}$,A=$\frac{π}{3}$-C,
则0<C<$\frac{π}{3}$,
sin2A+sin2C=$\frac{1-cos2A}{2}$+$\frac{1-cos2C}{2}$
=1-$\frac{1}{2}$×2cos(A+C)cos(A-C)
=1-$\frac{1}{2}$cos(A-C)
=1-$\frac{1}{2}$cos($\frac{π}{3}$-2C),
∵0<C<$\frac{π}{3}$,
∴0<2C<$\frac{2π}{3}$,
则-$\frac{2π}{3}$<-2C<0,-$\frac{π}{3}$<$\frac{π}{3}$-2C<$\frac{π}{3}$,
则$\frac{1}{2}$<cos($\frac{π}{3}$-2C)≤1,
即$\frac{1}{4}$<$\frac{1}{2}$cos($\frac{π}{3}$-2C)≤$\frac{1}{2}$,
则-$\frac{1}{2}$≤-$\frac{1}{2}$cos($\frac{π}{3}$-2C)<$-\frac{1}{4}$,
则$\frac{1}{2}$≤1-$\frac{1}{2}$cos($\frac{π}{3}$-2C)<$\frac{3}{4}$
∴sin2A+sin2C的取值范围是[$\frac{1}{2}$,$\frac{3}{4}$).

点评 本题考查了正弦定理、倍角公式、和差公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.直线过点(-3,-2)且在两坐标轴上的截距相等,则该直线方程为(  )
A.2x-3y=0B.x+y+5=0
C.2x-3y=0或x+y+5=0D.x+y+5=0或x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)是定义在R上的奇函数,且当x>0时,$f(x)={(\frac{1}{2})^x}+1$
(1)求函数f(x)的解析式
(2)画出函数的图象,根据图象写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)△ABC的顶点坐标分别是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程;
(2)△ABC的顶点坐标分别是A(0,0),B(5,0),C(0,12),求它的内切圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,2AB=3AC,∠A=$\frac{π}{3}$,∠BAC的平分线交边BC于点D,|AD|=1,则(  )
A.AB•AC=$\sqrt{2}$AB+ACB.AB+AC=$\sqrt{2}$AB•ACC.AB•AC=$\sqrt{3}$AB+ACD.AB+AC=$\sqrt{3}$AB•AC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在平面直角坐标系xOy中,已知△ABC的顶点A(0,4),C(0,-4),顶点B在椭圆$\frac{x^2}{9}+\frac{y^2}{25}=1$上,则$\frac{sin(A+C)}{sinA+sinC}$=(  )
A.$\frac{3}{5}$B.$\frac{5}{3}$C.$\frac{4}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合I,M,N的关系如图所示,则I,M,N的关系为(  )
A.(∁IM)?(∁IN)B.M⊆(∁IN)C.(∁IM)⊆(∁IN)D.M?(∁IN)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,三棱柱ABC-A1B1C1的侧面AA1B1B是边长为2的正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.
(I)求证:平面AA1B1B⊥平面BB1C1C;
(II)求三棱锥A-B1CC1体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an},a1=1,an+1=an+2n,计算数列{an}的第100项.现已给出该问题算法的流程图(如图1所示)

(1)请在图1中判断框的A、B、C(其中A中用i的关系表示)处填上合适的语句,使之完成该问题的算法功能.
(2)根据流程图1补充完整程序语言(如图2)(即在D、E、F处填写合适的语句).
解:(将答案写在下面相应位置)

查看答案和解析>>

同步练习册答案