【题目】函数.
(1)当时,求方程的根的个数;
(2)若恒成立,求的取值范围.
注: 为自然对数的底数
【答案】(1)两个 (2)
【解析】
(1)转化为研究函数零点问题,利用导数研究其单调性,再根据零点存在定理确定零点个数;
(2)先转化为对应函数最值问题:,再令,转化为解不等式,最后根据导数研究新函数单调性,根据单调性解不等式得结果.
(1)当时,构造函数,求导得:,
当时,,在上单调递减;
当时,,在上单调递增;
∵.
又∵,
∴,使,即存在两个零点,
∴方程存在两个根.
(2),
i)当时,,不合题意,舍去;
ii)当时,由可得,列表:
- | 0 | + | |
极小值 |
据表可得,,依题意有
令,则上式等价于,等价于,
构造函数,
记函数,易证得在上单调递减,在上单调递增,
∴,∴,∴在上单调递增,注意到,
∴.
综上所述,.
科目:高中数学 来源: 题型:
【题目】如图,在一条景观道的一端有一个半径为米的圆形摩天轮O,逆时针分钟转一圈,从处进入摩天轮的座舱,垂直于地面,在距离处米处设置了一个望远镜.
(1)同学甲打算独自乘坐摩天轮,但是其母亲不放心,于是约定在登上摩天轮座舱分钟后,在座舱内向其母亲挥手致意,而其母亲则在望远镜中仔细观看.问望远镜的仰角应调整为多少度?(精确到1度)
(2)在同学甲向其母亲挥手致意的同时,同一座舱的另一名乘客乙在拍摄地面上的一条绿化带,发现取景的视角恰为,求绿化带的长度(精确到1米)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为
(1)在曲线上任取一点,连接,在射线上取一点,使,求点轨迹的极坐标方程;
(2)在曲线上任取一点,在曲线上任取一点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,,分别是椭圆的左右焦点,过点的直线交椭圆于,两点,且的周长为12.
(Ⅰ)求椭圆的方程
(Ⅱ)过点作斜率为的直线与椭圆交于两点,,试判断在轴上是否存在点,使得是以为底边的等腰三角形若存在,求点横坐标的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知为等边三角形,为等腰直角三角形,,平面平面ABD,点E与点D在平面ABC的同侧,且,.点F为AD中点,连接EF.
(1)求证:平面ABC;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,线段、都是圆的弦,且与垂直且相交于坐标原点,如图所示,设△的面积为,设△的面积为.
(1)设点的横坐标为,用表示;
(2)求证:为定值;
(3)用、、、表示出,试研究是否有最小值,如果有,求出最小值,并写出此时直线的方程;若没有最小值,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com