精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≥0}\\{lo{g}_{2}(-x),x<0}\end{array}\right.$ 则f(f(-2))=2;若f(x)≥2,则实数x的取值范围是x≥1或x≤-4.

分析 根据分段函数的表达式利用代入法进行求解即可.

解答 解:由分段函数的表达式得f(-2)=log22=1,
f(1)=21=2,
则f(f(-2))=2;
若x≥0,由f(x)≥2得2x≥2,得x≥1,
若x<0,由f(x)≥2得log2(-x)≥2,得-x≥4,则x≤-4,
综上x≥1或x≤-4,
故答案为:2,x≥1或x≤-4.

点评 本题主要考查函数值的计算,以及分段函数的表达式的应用,注意变量的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知一个k进制数132与十进制数42相等,那么k等于(  )
A.8或5B.6C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某几何体的三视图如下,则几何体的表面积为(  )
A.2$\sqrt{5}$+2$\sqrt{2}$B.6+2$\sqrt{3}$+2$\sqrt{2}$C.2+2$\sqrt{5}$+2$\sqrt{2}$D.6+2$\sqrt{5}$+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.△ABC为等腰直角三角形,AC=BC=4,∠ACB=90°,D、E分别是边AC和AB的中点,现将△ADE沿DE折起,使面ADE⊥面DEBC,H、F分别是边AD和BE的中点,平面BCH与AE、AF分别交于I、G两点.
(Ⅰ)求证:IH∥BC;
(Ⅱ)求二面角A-GI-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,点M,N分别为线段PB,PC上的点,MN⊥PB.
(Ⅰ)求证:BC⊥平面PAB;
(Ⅱ)当PA=AB=2,二面角C-AN-D大小为为$\frac{π}{3}$时,求PN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{|{2}^{x}-b|,x≤1}\\{\frac{3}{x-1},x>1}\end{array}\right.$,若f(f(7))=$\sqrt{2}$,则实数b的值为0或2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则此几何体的体积是(  )
A.$\frac{10}{3}$B.4C.$\frac{20}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=lnx+$\frac{2a}{x+1}$-a(a∈R)在[$\frac{1}{2}$,+∞)上单调递增,则a的取值范围是(  )
A.[$\frac{9}{4}$,+∞)B.[2,+∞)C.(-∞,$\frac{9}{4}$]D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在等比数列{an}中,若a3a6=9,a1a2a8=27,则a2的值为(  )
A.9B.4C.3D.2

查看答案和解析>>

同步练习册答案