精英家教网 > 高中数学 > 题目详情
15.在等比数列{an}中,a1+an=82,a3•an-2=81,且数列{an}的前n项和Sn=121,则此数列的项数n等于5.

分析 由题意易得a1和an是方程x2-82x+81=0的两根,求解方程得到两根,分数列递增和递减可得a1,an,再由Sn=121得q,进一步可得n值.

解答 解:由等比数列的性质可得a1an=a3•an-2=81,
又a1+an=82,
∴a1和an是方程x2-82x+81=0的两根,
解方程可得x=1或x=81,
若等比数列{an}递增,则a1=1,an=81,
∵Sn=121,∴$\frac{{a}_{1}-{a}_{n}q}{1-q}$=$\frac{1-81q}{1-q}$=121,
解得q=3,∴81=1×3n-1,解得n=5;
若等比数列{an}递减,则a1=81,an=1,
∵Sn=121,∴$\frac{{a}_{1}-{a}_{n}q}{1-q}$=$\frac{81-q}{1-q}$=121,
解得q=$\frac{1}{3}$,∴1=81×($\frac{1}{3}$)n-1,解得n=5.
综上,数列的项数n等于5.
故答案为:5.

点评 本题考查等比数列的求和公式和通项公式,涉及等比数列的性质和韦达定理,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.由曲线y=x2与直线y=3x所围成的图形的面积为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ln(x+a)-x有且只有一个零点,其中a>0.
(1)求a的值;
(2)设函数h(x)=f(x)+x,证明:对?x1,x2∈(-1,+∞)(x1≠x2),不等式$\frac{{{x_1}-{x_2}}}{{h({x_1})-h({x_2})}}>\sqrt{{x_1}{x_2}+{x_1}+{x_2}+1}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆的一个焦点与两顶点为等边三角形的一个顶点,则该椭圆的长轴长是短轴长的(  )
A.$\sqrt{3}$倍B.2倍C.$\sqrt{2}$倍D.$\frac{3}{2}$倍

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l1:x-2y+4=0与l2:x+y-2=0相交于点P
(1)求交点P的坐标;
(2)设直线l3:3x-4y+5=0,分别求过点P且与直线l3平行和垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.定义在R上的奇函数f(x)的导函数为f'(x),且f(-1)=0,当x>0时,xf'(x)-f(x)<0则不等式f(x)<0的解集为(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x-1|+|x+1|,M为不等式f(x)≤4的解集.
(1)求集合M.
(2)当a,b∈M时,求证$2|{a-b}|≤\sqrt{16-7{a^2}{b^2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知各项均为正数的等比数列{an}的首项a1=2,Sn为其前n项和,若5S1,S3,3S2成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,记数列{cn}的前n项和Tn.若${T_n}≤\frac{2014}{2015}$,求整数n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a}.
(1)求A∪B;
(2)求(∁RA)∩B;
(3)若A∩C=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案