【题目】某港口船舶停靠的方案是先到先停.
(1)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.
(2)根据以往经验,甲船将于早上到达,乙船将于早上到达,请应用随机模拟的方法求甲船先停靠的概率,随机数模拟实验数据参考如下:记, 都是之间的均匀随机数,用计算机做了100次试验,得到的结果有12次满足,有6次满足.
【答案】(1)不公平(2)0.88
【解析】试题分析:
(1)利用古典概型计算公式结合题意设甲胜为事件,乙胜为事件,计算可得甲胜的概率,乙胜的概率,则这种游戏规则不公平.
(2) 应用随机模拟的方法,如果,则甲船先停靠,根据题意,100次试验有12次结果满足,则甲船先停靠的概率是.
试题解析:
(1)这种规则是不公平的;
设甲胜为事件,乙胜为事件,基本事件总数为种,
则甲胜即两编号和为偶数所包含的基本事件数有13个: , , , , , ,,,,,,,,
∴甲胜的概率,乙胜的概率,
∴这种游戏规则不公平.
(2)应用随机模拟的方法,如果,即,则甲船先停靠,
根据题意,100次试验有12次结果满足,
所以甲船先停靠的概率是.
科目:高中数学 来源: 题型:
【题目】中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=,椭圆的长半轴与双曲线实半轴之差为4,离心率之比为3∶7.
(1)求这两曲线的方程;
(2)若P为这两曲线的一个交点,求cos∠F1PF2的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:实数x满足x2-5ax+4a2<0,其中a>0,命题q:实数x满足.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80﹣2t(件),价格近似满足于 (元).
(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;
(2)求该种商品的日销售额y的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列四种说法:
①命题“”为假,则、至少一个为假;
②命题“一次函数都是单调函数”的否定是“一次函数都不是单调函数”;
③动点到点 与到点的距离之和为2,则点的轨迹是焦点在轴上的椭圆;
④命题“若直线与双曲线相切,则该直线与双曲线只有一个公共点”的逆命题是真命题.
其中正确的有__________.(填写序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的离心率为,顶点为,且.
(1)求椭圆的方程;
(2)是椭圆上除顶点外的任意点,直线交轴于点,直线交于点.设的斜率为, 的斜率为,试问是否为定值?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面内动点P(x,y)与两定点A(-2, 0), B(2,0)连线的斜率之积等于,若点P的轨迹为曲线E,过点Q作斜率不为零的直线交曲线E于点.
(I)求曲线E的方程;
(II)求证: ;
(III)求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图椭圆的上下顶点为A、B,直线: ,点P是椭圆上异于点A、B的任意一点,连结AP并延长交直线于点N,连结BP并延长交直线于点M,设AP、BP所在直线的斜率分别为,若椭圆的离心率为,且过点,(1)求的值,并求最小值;(2)随着点P的变化,以MN为直径的圆是否恒过定点,若过定点,求出该定点坐标;若不过定点,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三共有800名学生,为了解学生3月月考生物测试情况,根据男女学生人数差异较大,从中随机抽取了200名学生,记录他们的分数,并整理得如图频率分布直方图.
(1)若成绩不低于60分的为及格,成绩不低于80分的为优秀,试估计总体中合格的有多少人?优秀的有多少人?
(2)已知样本中有一半的女生分数不小于80,且样本中不低于80分的男女生人数之比2:3,试估计总体中男生和女生人数的比例.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com