精英家教网 > 高中数学 > 题目详情

【题目】已知过原点的动直线与圆 相交于不同的两点.

(1)求圆的圆心坐标;

(2)求线段的中点的轨迹的方程;

(3)是否存在实数,使得直线 与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.

【答案】(1); (2); (3).

【解析】

(1)将方程化为标准式方程,可得到圆心坐标;(2)设线段的中点,直线的方程为联立直线和圆的方程得到韦达定理,进而得到,此时消去参数m即可得到轨迹方程;(3)结合第二问可得到曲线的轨迹,根据直线和圆的位置关系可得到满足题意的结果.

(1)圆 化为,所以圆的圆心坐标为

(2)设线段的中点,直线的方程为(易知直线的斜率存在),则得:

.解得:

消去得:

解得:

的轨迹的方程为

(3)由题意知直线表示过定点 ,斜率为的直线.

表示的是一段关于轴对称,起点为按顺时针方向运动到的圆弧(不包含端点).

由条件得:而当直线与轨迹相切时,,解得(舍去).

可得当时,直线与曲线只有一个交点。

综上所述,当时直线 与曲线只有一个交点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,曲线C1的参数方程为 (α为参数),将曲线C1上所有点的横坐标缩短为原来的 ,纵坐标缩短为原来的 ,得到曲线C2 , 在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为4ρsin(θ+ )+ =0.
(1)求曲线C2的极坐标方程及直线l与曲线C2交点的极坐标;
(2)设点P为曲线C1上的任意一点,求点P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的是自动通风设施该设施的下部ABCD是等腰梯形,其中米,高米,上部CmD是个半圆,固定点E为CD的中点是由电脑控制其形状变化的三角通风窗阴影部分均不通风,MN是可以沿设施边框上下滑动且始终保持和CD平行的伸缩横杆.

设MN与AB之间的距离为x米,试将三角通风窗的通风面积平方米表示成关于x的函数

当MN与AB之间的距离为多少米时,三角通风窗的通风面积最大?求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱中,侧棱与底面垂直,分别是的中点.

(1)求证:平面

(2)求证:平面

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将边长为2的正方体沿对角线折起,得到三棱锥,则下列命题中,错误的为( )

A. 直线平面

B.

C. 三棱锥的外接球的半径为

D. 的中点,则平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的正方形,侧棱底面,且侧棱的长是,点分别是的中点.

(Ⅰ)证明: 平面

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运行如图所示的流程图,则输出的结果S是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合M={1,2…9}中抽取3个不同的数构成集合{a1 , a2 , a3}
(1)对任意i≠j,求满足|ai﹣aj|≥2的概率;
(2)若a1 , a2 , a3成等差数列,设公差为ξ(ξ>0),求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:极坐标与参数方程]
在直角坐标系xOy中,直线l的参数方程为 (t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位),且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=4sinθ.
(1)求圆C的直角坐标方程和直线l普通方程;
(2)设圆C与直线l交于点A,B,若点P的坐标为(3,0),求|PA|+|PB|.

查看答案和解析>>

同步练习册答案