【题目】已知抛物线C: ,点在x轴的正半轴上,过点M的直线与抛物线C相交于A,B两点,O为坐标原点.
(1)若,且直线的斜率为1,求以AB为直径的圆的方程;
(2)是否存在定点M,使得不论直线绕点M如何转动, 恒为定值?
科目:高中数学 来源: 题型:
【题目】学校射击队的某一选手射击一次,其命中环数的概率如表:
命中环数 | 10环 | 9环 | 8环 | 7环 |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求该选手射击一次,
(1)命中9环或10环的概率.
(2)至少命中8环的概率.
(3)命中不足8环的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为圆的圆心, 是圆上动点,点在圆的半径上,且有点和上的点,满足
(1)当在圆上运动时,求点的轨迹方程;
(2)若斜率为的直线与圆相切,与(1)中所求点的轨迹教育不同的两点 是坐标原点,且时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆过两点, ,且圆心在直线上.
(Ⅰ)求圆的标准方程;
(Ⅱ)直线过点且与圆有两个不同的交点, ,若直线的斜率大于0,求的取值范围;
(Ⅲ)在(Ⅱ)的条件下,是否存在直线使得弦的垂直平分线过点,若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,圆心为,定点, 为圆上一点,线段上一点满足,直线上一点,满足.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)为坐标原点, 是以为直径的圆,直线与相切,并与轨迹交于不同的两点.当且满足时,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线在第一象限内的点到焦点的距离为.
(1)若,过点, 的直线与抛物线相交于另一点,求的值;
(2)若直线与抛物线相交于两点,与圆相交于两点, 为坐标原点, ,试问:是否存在实数,使得的长为定值?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2015年12月,华中地区数城市空气污染指数“爆表”,此轮污染为2015年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:
(1)由散点图知与具有线性相关关系,求关于的线性回归方程;(提示数据: )
(2)利用(1)所求的回归方程,预测该市车流量为12万辆时的浓度.
参考公式:回归直线的方程是,其中, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量, ,且满足.
(1)求点的轨迹方程所代表的曲线;
(2)若点, , 是曲线上的动点,点在直线上,且满足, ,当点在上运动时,求点的轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com