精英家教网 > 高中数学 > 题目详情
2.i是虚数单位.已知复数$Z=\frac{1+3i}{3+i}+{({1+i})}^2$,则复数Z对应点落在(  )
A.第四象限B.第三象限C.第二象限D.第一象限

分析 利用复数的除法运算法则以及多项式乘法运算法则化简求解即可.

解答 解:复数$Z=\frac{1+3i}{3+i}+{({1+i})}^2$=$\frac{(1+3i)(3-i)}{(3+i)(3-i)}+2i$=$\frac{6+8i}{10}+2i$=$\frac{3}{5}+\frac{14}{5}i$,
复数对应点($\frac{3}{5},\frac{14}{5}$)在第一象限.
故选:D.

点评 本题考查复数的代数形式的混合运算,复数的几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=sin(2x+$\frac{π}{6}$)(x∈[0,$\frac{7π}{6}$]),若方程f(x)=m恰好有三个根,分别为x1,x2,x3(x1<x2<x3),则x1+2x2+x3的值是(  )
A.$\frac{3π}{4}$B.$\frac{4π}{3}$C.$\frac{5π}{3}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数g(x)=Asin(ωx+φ)(其中A>0,|φ|<$\frac{π}{2}$,ω>0)的图象如图所示,函数f(x)=g(x)+$\frac{\sqrt{3}}{2}$cos2x-$\frac{3}{2}$sin2x
(1)如果${x_1},\;{x_2}∈(-\frac{π}{6},\frac{π}{3})$,且g(x1)=g(x2),求g(x1+x2)的值;
(2)当-$\frac{π}{6}$≤x≤$\frac{π}{3}$时,求函数f(x)的最大值、最小值及相应的x值;
(3)已知方程f(x)-k=0在$[0,\frac{π}{2}]$上只有一解,则k的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图所示,ABCD-A1B1C1D1是长方体,AA1=a,∠BAB1=∠B1A1C1=30°,则AB与A1C1所成的角为30°,AA1与B1C所成的角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在四面体OABC中,棱OA、OB、OC两两垂直,且OA=1,OB=2,OC=3,G为△ABC的重心,则$\overrightarrow{OG}$•($\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$)=$-\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,BC边上的中线AD长为3,且BD=2,$sinB=\frac{{3\sqrt{6}}}{8}$.
(Ⅰ)求sin∠BAD的值;
(Ⅱ)求cos∠ADC及AC边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若A、B、C为△ABC的三内角,且其对边分别为a、b、c.若向量$\overrightarrow{m}$=(cos2$\frac{A}{2}$,cos$\frac{A}{2}$-1),向量$\overrightarrow{n}$=(1,cos$\frac{A}{2}$+1)且2$\overrightarrow{m}$•$\overrightarrow{n}$=-1.
(1)求A的值;         
(2)若a=2$\sqrt{3}$,三角形面积S=$\sqrt{3}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.记方程①x2+a1x+1=0,②x2+a2x+1=0,③x2+a3x+1=0,其中a1,a2,a3是正实数,当a1,a2,a3成等比数列,下列选项中,当方程③有实根时,能推出的是(  )
A.方程①有实根或方程②无实根B.方程①有实根或方程②有实根
C.方程①无实根或方程②无实根D.方程①无实根或方程②有实根

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)在R上存在导数f′(x),?x∈R,有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(2-m)-f(m)>2-2m,则实数m的取值范围为(1,+∞).

查看答案和解析>>

同步练习册答案