精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求的单调区间;

(2)若,求的取值范围.

【答案】(1)时,单调递减;当时,单调递减;在单调递增. (2)

【解析】

(1)由题意,求得函数的导数,分类讨论,即可求解函数的单调区间;

(2)由(1)知,当时,得到不恒成立,时,只需,令,利用导数求得函数的单调性与最值,即可求解。

解:(1)的定义域为

时,,所以单调递减;

时,,得,当时,,当时,

所以当时,单调递减;在单调递增.

综上,当时,单调递减;

时,单调递减;在单调递增

(2)由(1)知,当时,

单调递减,而,所以不恒成立,

时,单调递减;在单调递增,所以

依题,只需

,则,所以单调递增

,所以当时,

时,

所以当时,

所以若,则的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)时,讨论函数的单调性;

(2)时,若不等式时恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数(a>0,a≠1)的反函数为函数y=g(x)的图像与的图像关于点(a,0)对称

(1)求函数y=g(x)的解析式

(2)是否存在实数a,使得当恒有成立若存在,求出a的取值范围若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如城镇小汽车的普及率为75%,即平均每100个家庭有75个家庭拥有小汽车,若从如城镇中任意选出5个家庭,则下列结论成立的是( )

A.5个家庭均有小汽车的概率为

B.5个家庭中,恰有三个家庭拥有小汽车的概率为

C.5个家庭平均有3.75个家庭拥有小汽车

D.5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某课题小组共10人,已知该小组外出参加交流活动次数为123的人数分别为33 4,现从这10人中随机选出2人作为该组代表参加座谈会.

1)记“选出2人外出参加交流活动次数之和为4”为事件A,求事件A发生的概率;

2)设X为选出2人参加交流活动次数之差的绝对值,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于简单几何体的说法中正确的是(

①有两个面互相平行,其余各面都是平行四边形的多面体是棱柱;

②有一个面是多边形,其余各面都是三角形的几何体是棱锥;

③有两个底面平行且相似,其余各面都是梯形的多面体是棱台;

④空间中到定点的距离等于定长的所有点的集合是球面.

A.①②B.③④C.D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要测量底部不能到达的电视塔AB的高度,C点测得塔顶A的仰角是45°,D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD="40" m,则电视塔的高度为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当m=1时,若方程在区间上有唯一的实数解,求实数a的取值范围;

(3)当m>0时,若对于区间[1,2]上的任意两个实数x1,x2,且x1<x2,都有成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边上有一点P的坐标是(3aa),其中a≠0

1)求cosα)的值;

2)若tan2α+β)=1,求tanβ的值.

查看答案和解析>>

同步练习册答案