精英家教网 > 高中数学 > 题目详情
3.已知锐角△ABC的内角A=$\frac{π}{3}$,点0为三角形外接圆的圆心,若$\overrightarrow{OA}$=x$\overrightarrow{OB}$+y$\overrightarrow{OC}$,则2x-y的范围为(-2,1).

分析 以三角形外心为坐标原点建立坐标系,设外接圆圆心为1,则ABC均在单位圆上,不妨设C(1,0),利用A=$\frac{π}{3}$解出B点坐标,设出A(cosθ,sinθ),则由$\overrightarrow{OA}$=x$\overrightarrow{OB}$+y$\overrightarrow{OC}$得出关于x,y和θ的关系,解出x,y,根据θ的范围得出关于2x-y的范围.

解答 解:设△ABC的外接圆半径为1,以△ABC的外心O为坐标原点,以OC所在直线为x轴建立坐标系,如图:
则C(1,0),设A(cosθ,sinθ),∵A=$\frac{π}{3}$,∴∠BOC=$\frac{2π}{3}$,∴B(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$).
∴$\overrightarrow{OA}$=(cosθ,sinθ),$\overrightarrow{OB}$=(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),$\overrightarrow{OC}$=(1,0).
∵$\overrightarrow{OA}$=x$\overrightarrow{OB}$+y$\overrightarrow{OC}$,∴(cosθ,sinθ)=(-$\frac{x}{2}$,-$\frac{\sqrt{3}x}{2}$)+(y,0)=(-$\frac{x}{2}+y$,-$\frac{\sqrt{3}x}{2}$).
∴$\left\{\begin{array}{l}{cosθ=-\frac{x}{2}+y}\\{sinθ=-\frac{\sqrt{3}x}{2}}\end{array}\right.$,解得x=-$\frac{2sinθ}{\sqrt{3}}$,y=cosθ-$\frac{sinθ}{\sqrt{3}}$,
∴2x-y=-$\frac{4sinθ}{\sqrt{3}}$+$\frac{sinθ}{\sqrt{3}}$-cosθ=-$\sqrt{3}$sinθ-cosθ=-2sin(θ+$\frac{π}{6}$)
∵△ABC是锐角三角形,∴$\frac{π}{3}$<θ<π,∴$\frac{π}{2}$<θ$+\frac{π}{6}$<$\frac{7π}{6}$.
∴当θ$+\frac{π}{6}$=$\frac{π}{2}$时,2x-y取得最小值-2,
当θ$+\frac{π}{6}$=$\frac{7π}{6}$时,2x-y取得最大值1.
故2x-y的值域是(-2,1).
故答案为(-2,1).

点评 本题考查了平面向量在几何中的应用,根据题目作出符合条件的图形是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知定义域为R的奇函数满足f(x+4)=f(x),且x∈(0,2)时,f(x)=ln(x2+a),a>0,若函数f(x)在区间[-4,4]上有9个零点,则实数a的取值范围为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在各项均为正数的数列{an}中,若a1=$\frac{1}{3}$,an+1=an+$\frac{{a}_{n}^{2}}{{n}^{2}}$(n∈N+).
(1)试判断数列{an}的单调性,并证明对任意的n∈N+,恒有an<1;
(2)求证:对一切n∈N+,有an>$\frac{1}{2}$-$\frac{1}{4n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.用长8m的铝材,做成一个“H”字形窗框,求:高和宽各为多少时窗户的透亮面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.画出下列函数在长度为一个周期的闭区间上的简图(有条件的请用计算器或计算机检验).
(1)y=$\frac{1}{2}$sinx;
(2)y=sin3x;
(3)y=sin(x-$\frac{π}{3}$);
(4)y=2sin(2x-$\frac{π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=-$\frac{1}{2}$ax2+(1+a)x-lnx(a∈R).
(Ⅰ)当a>0时,求函数f(x)的单调递减区间;
(Ⅱ)当a=0时,设函数g(x)=xf(x).若存在区间[m,n]⊆[$\frac{1}{2}$,+∞),使得函数g(x)在[m,n]上的值域为[k(m+2)-2,k(n+2)-2],求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若方程x2+y2-x+2y+m=0表示一个圆,则m的取值范围为(-∞,$\frac{5}{4}$);此时,它的圆心坐标为($\frac{1}{2}$,-1);若m=1,则半径为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求函数f(x)=$\frac{4}{2-{x}^{2}}$的图形的渐近线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义域为R的函数f(x),满足对任意x∈R,都有f(1+x)=f(1-x),且f(-x)=f(x),当x∈[0,1]时,f(x)=x,若函数g(x)=$\left\{\begin{array}{l}{lgx}&{(x>0)}\\{\frac{-2}{x-1}}&{(x≤0)}\end{array}\right.$,则函数y=f(x)-g(x)在区间[-11,11]上的零点的个数是(  )
A.18B.19C.20D.21

查看答案和解析>>

同步练习册答案