精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体中,底面是边长为的正方形,四边形是矩形,平面平面 分别是的中点.

Ⅰ)求证: 平面

Ⅱ)求证:平面平面

Ⅲ)求多面体的体积.

【答案】1)见解析(2)见解析38

【解析】试题分析:(1由面面垂直性质定理得平面即得而由正方形性质得所以由线面垂直判定定理得平面2相交于点,由三角形中位线性质易得 再由线面平行判定定理以及面面平行判定定理得结论3即求两个四棱锥与棱锥体积之和,而AC为高,根据锥体体积公式求体积

试题解析:证明:∵在正方形中,

平面平面

且平面平面

在矩形中,

平面

点,

平面

平面

相交于点,

中点,

又∵中点,

点,

点,

平面

平面

平面平面

将多面体分割为

棱锥与棱锥

到平面的距离均为的长度,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题共14分)

如图,在四棱锥中, 平面,底面是菱形, .

()求证: 平面

)若所成角的余弦值;

)当平面与平面垂直时,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体是棱上的一点

1求证:平面

2求证:

3是棱的中点在棱上是否存在点使得平面若存在求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为,其中为参数, ,再以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,其中 ,直线与曲线交于两点.

(1)求的值;

(2)已知点,且,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.

(1)如图1,若点O与点A重合,则OM与ON的数量关系是
(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?
(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c的图象如图所示,则|a﹣b+c|+|2a+b|=(  )

A.a+b
B.a﹣2b
C.a﹣b
D.3a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的对称轴为坐标轴,离心率为,且一个焦点坐标为

(1)求椭圆的方程;

(2)设直线与椭圆相交于两点,以线段为邻边作平行四边形,其中点在椭圆上, 为坐标原点,求点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了更好地规划进货的数量,保证蔬菜的新鲜程度,某蔬菜商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如下图所示((吨)为买进蔬菜的质量, (天)为销售天数):

2

3

4

5

6

7

9

12

1

2

3

3

4

5

6

8

(Ⅰ)根据上表数据在下列网格中绘制散点图;

(Ⅱ)根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(Ⅲ)根据(Ⅱ)中的计算结果,若该蔬菜商店准备一次性买进25吨,则预计需要销售多少天.

参考公式: .

查看答案和解析>>

同步练习册答案