【题目】在三棱锥中,平面平面,,,,.
(1)证明:;
(2)求直线与平面所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】如图是某公司一种产品的日销售量(单位:百件)关于日最高气温(单位:)的散点图.
数据:
13 | 15 | 19 | 20 | 21 | |
26 | 28 | 30 | 18 | 36 |
(1)请剔除一组数据,使得剩余数据的线性相关性最强,并用剩余数据求日销售量关于日最高气温的线性回归方程;
(2)根据现行《重庆市防暑降温措施管理办法》.若气温超过36度,职工可享受高温补贴.已知某日该产品的销售量为53.1,请用(1)中求出的线性回归方程判断该公司员工当天是否可享受高温补贴?
附:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果既约分数满足:(、为正整数),则称为“牛分数”.现将所有的牛分数按递增顺序排成一个数列,称为“牛数列”.证明:对于牛数列中的任两个相邻项、,都满足.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,点为曲线上的动点,过作轴的垂线,垂足为,满足。
(1)求曲线的方程;
(2)直线与曲线交于两不同点,( 非原点),过,两点分别作曲线的切线,两切线的交点为。设线段的中点为,若,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的左焦点为,离心率为,为圆的圆心.
(1)求椭圆的方程;
(2)已知过椭圆右焦点的直线交椭圆于两点,过且与垂直的直线与圆交于两点,求四边形面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型电器企业,为了解组装车间职工的生活情况,从中随机抽取了名职工进行测试,得到频数分布表如下:
日组装个数 | ||||||
人数 | 6 | 12 | 34 | 30 | 10 | 8 |
(1)现从参与测试的日组装个数少于的职工中任意选取人,求至少有人日组装个数少于的概率;
(2)由频数分布表可以认为,此次测试得到的日组装个数服从正态分布,近似为这人得分的平均值(同一组数据用该组区间的中点值作为代表).
(
(ii)为鼓励职工提高技能,企业决定对日组装个数超过的职工日工资增加元,若在组装车间所有职工中任意选取人,求这三人增加的日工资总额的期望.
附:若随机变量服从正态分布,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于集合,若存在两个数列满足(i) ;(ii) ,则称M为一个“友谊集”,称(A,B)为的一种“友谊排列”,如A=(3,10,7,9,6)和B=(2,8,4,5,1)便是集合的一种友谊排列,记为
(1)证明:若为一个友谊集,则存在偶数种友谊排列;
(2)确定集合及的全体友谊排列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线:与直线:交于,两点.
(1)若的面积为,求;
(2)轴上是否存在点,使得当变动时,总有?若存在,求以线段为直径的圆的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)若函数在上是增函数,求正数的取值范围;
(2)当时,设函数的图象与x轴的交点为,,曲线在,两点处的切线斜率分别为,,求证:+ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com