【题目】设函数f(x)的导函数为f′(x),若f(x)=ex﹣f(0)x+x2(e是自然对数的底数).
(1)求f(0)和f′(1)的值;
(2)若g(x)=x2+a与函数f(x)的图象在区间[﹣1,2]上恰有2两个不同的交点,求实数a的取值范围.
【答案】解:(1)∵f(x)=ex﹣f(0)x+x2 ,
∴f′(x)=ex﹣f(0)+x,
∴f′(1)=f′(1)﹣f(0)+1,
∴f(0)=1,
∴f(x)=ex﹣x+x2 ,
∴f(0)=f′(1)﹣0+0,
∴f′(1)=1.
(2)由(1)可得:f(x)=﹣x+x2 ,
由g(x)=x2+a=f(x),化为a=﹣x=h(x),x∈[﹣1,2].
∴h′(x)==,
令h′(x)>0,解得1<x<2,此时函数h(x)单调递增;令h′(x)<0,解得﹣1<x<1,此时函数h(x)单调递减.
∴当x=1时,函数h(x)取得最小值,h(1)=0.而h(﹣1)=,h(2)=e﹣2.
∵g(x)=x2+a与函数f(x)的图象在区间[﹣1,2]上恰有2两个不同的交点,
∴0<a<e﹣2.
∴实数a的取值范围是(0,e﹣2).
【解析】(1)由f(x)=ex﹣f(0)x+x2 , 可得f′(x)=ex﹣f(0)+x,令x=1,可得f(0),进而得到f′(1).
(2)g(x)=x2+a与函数f(x)的图象在区间[﹣1,2]上恰有2两个不同的交点y=a与h(x)=﹣x在x∈[﹣1,2]上有两个不同交点.利用导数研究函数h(x)的单调性极值与最值,结合图象即可得出.
科目:高中数学 来源: 题型:
【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:
AQI指数值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
下图是某市10月1日—20日AQI指数变化趋势:
下列叙述错误的是
A. 这20天中AQI指数值的中位数略高于100
B. 这20天中的中度污染及以上的天数占
C. 该市10月的前半个月的空气质量越来越好
D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如图.记成绩不低于90分者为“成绩优秀”.
(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个均“成绩优秀”的概率;
(2)由以上统计数据作出列联表,并判断能否在犯错误的概率不超过0.1的前提下认为:“成绩优秀”与教学方式有关.
0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面,在直角梯形中,,,, 为线段 的中点
(1)求证:平面平面
(2)在线段 上是否存在点 ,使得平面 ?若存在,求出点 的位置;若不存在,请说明理由
(3)若 是中点,,,,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面为平行四边形, 底面, 是棱的中点,
且.
(1)求证: 平面;
(2)如果是棱上一点,且直线与平面所成角的正弦值为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com