【题目】如图,棱形与正三角形的边长均为2,它们所在平面互相垂直,,且.
(1)求证:;
(2)若,求二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】甲、乙二射击运动员分别对一目标射击次,甲射中的概率为,乙射中的概率为,求:
(1)人都射中目标的概率; (2)人中恰有人射中目标的概率;
(3)人至少有人射中目标的概率; (4)人至多有人射中目标的概率?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】盒子内有3个不同的黑球,5个不同的白球.
(1)从中取出3个黑球、4个白球排成一列且4个白球两两不相邻的排法有多少种?
(2)从中任取6个球且白球的个数不比黑球个数少的取法有多少种?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]:在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线,的直角坐标方程;
(2)判断曲线,是否相交,若相交,请求出交点间的距离;若不相交,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设(e为自然对数的底数),.
(I)记,讨论函单调性;
(II)令,若函数G(x)有两个零点.
(i)求参数a的取值范围;
(ii)设的两个零点,证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线与曲线相交于两点,与轴相交于点.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学习小组在研究性学习中,对昼夜温差大小与绿豆种子一天内出芽数之间的关系进行研究.该小组在4月份记录了1日至6日每天昼夜最高、最低温度(如图1),以及浸泡的100颗绿豆种子当天内的出芽数(如图2).
根据上述数据作出散点图,可知绿豆种子出芽数 (颗)和温差 ()具有线性相关关系.
(1)求绿豆种子出芽数 (颗)关于温差 ()的回归方程;
(2)假如4月1日至7日的日温差的平均值为11,估计4月7日浸泡的10000颗绿豆种子一天内的出芽数.
附:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点与上、下顶点构成直角三角形,以椭圆的长轴长为直径的圆与直线相切.
(1)求椭圆的标准方程;
(2)设过椭圆右焦点且不平行于轴的动直线与椭圆相交于两点,探究在轴上是否存在定点,使得为定值?若存在,试求出定值和点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com