精英家教网 > 高中数学 > 题目详情
9.在四棱锥E-ABCD中,底面ABCD是边长为2的正方形,△BCE为等边三角形,平面ABCD⊥平面BCE,F为CD上的动点,当AF+EF最小时,四棱锥E-ABCD与三棱锥F-ABE的外接球的半径之比为2$\sqrt{7}$:5.

分析 建立空间直角坐标系,如图所示,M(0,0,0),A(-1,2,0),B(-1,0,0),C(1,0,0),D(1,2,0),E(0,0,$\sqrt{3}$),设点F(1,y,0),其中0≤y≤2;|AF|+|EF|=$\sqrt{4{+(y-2)}^{2}}$+$\sqrt{1{+y}^{2}+3}$=$\sqrt{{(y-2)}^{2}+4}$+$\sqrt{{y}^{2}+4}$,如图根据对称性,F为CD上的中点时,AF+EF最小,设四棱锥E-ABCD心为G(0,1,m)则GE=GC⇒m=$\frac{1}{\sqrt{3}}$,⇒四棱锥E-ABCD半径R2,同理三棱锥F-ABE的外接球半径r2,即可求四棱锥E-ABCD与三棱锥F-ABE的外接球的半径之比

解答 解:建立空间直角坐标系,如图所示,
底面正方形ABCD的边长为2,△BCE为等边三角形,平面ABCD⊥平面BCE,
∴M(0,0,0),A(-1,2,0),B(-1,0,0),C(1,0,0),D(1,2,0),E(0,0,$\sqrt{3}$),
设点F(1,y,0),其中0≤y≤2;
|AF|+|EF|=$\sqrt{4{+(y-2)}^{2}}$+$\sqrt{1{+y}^{2}+3}$=$\sqrt{{(y-2)}^{2}+4}$+$\sqrt{{y}^{2}+4}$…①
①式表示在平面直角坐标系中点P(a,0)到点M(0,2),N(2,2)的距离和,如图根据对称性,可知a=1时,其距离和最小.
∴F为CD上的中点时,AF+EF最小,
设四棱锥E-ABCD心为G(0,1,m)
则GE=GC⇒m=$\frac{1}{\sqrt{3}}$,∴四棱锥E-ABCD半径R2=$\frac{7}{3}$
设三棱锥F-ABE的外接球球心H(x,y,z)
则HA=HB=HE=HF⇒x=-$\frac{1}{4}$,y=1,z=$\frac{5\sqrt{3}}{12}$.
    三棱锥F-ABE的外接球半径r2=$\frac{25}{12}$,
四棱锥E-ABCD与三棱锥F-ABE的外接球的半径之比等于2$\sqrt{7}$:5
故答案为:2$\sqrt{7}$:5

点评 本题考查了空间几何体的外接球,涉及到了运用函数的知识处理动点问题,建立坐标系求球的球心,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知数列{an}的前n项和Sn=n2+n,则a1+a3+a5+a7+a9=(  )
A.50B.45C.90D.80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知cos(x-$\frac{π}{4}$)=-$\frac{1}{3}$($\frac{5π}{4}$<x<$\frac{7π}{4}$),则sinx-cos2x=(  )
A.$\frac{5\sqrt{2}-12}{18}$B.$\frac{-4\sqrt{2}-7}{9}$C.$\frac{4-7\sqrt{2}}{9}$D.$\frac{-4-7\sqrt{2}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在长方体ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3,
(1)求异面直线A1B与B1C所成角的余弦值..
(2)若点E、F分别是AB、A1B的中点,求证:EF∥平面BDD1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若椭圆$\frac{x^2}{3}+\frac{y^2}{m}=1$与直线x+2y-2=0有两个不同的交点,则m的取值范围是($\frac{1}{4}$,3)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知双曲线M的中心在原点,以坐标轴为对称轴,焦点在x轴上,离心率为$\sqrt{2}$,焦点到一条渐近线的距离为1,
①求M的标准方程
②直线y=kx+1交M的左支于A、B两点,E为AB的中点,F为其左焦点,求直线EF在y轴上的截距m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD(  )cm.
A.5B.$\frac{16}{5}$C.$\frac{6}{5}$D.$\frac{17}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b∈R+,且$a+b+\frac{1}{a}+\frac{1}{b}=5$,则a+b的取值范围是(  )
A.[1,4]B.[2,+∞)C.(2,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组[13,14],第二组[14,15),第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
(1)若成绩小于15秒认为良好,求该样本在这次百米测试中成绩良好的人数;
(2)请估计学校1800名学生中,成绩属于第四组的人数;
(3)请根据频率分布直方图,求样本数据的众数、中位数、平均数和方差.

查看答案和解析>>

同步练习册答案