精英家教网 > 高中数学 > 题目详情
已知△ABC的内角A、B、C所对的边分别为a,b,c,且△ABC的外接圆半径为R,
AB
AC
=9
.sinB=cosAsinC.
(1)求△ABC的三边的长;
(2)设P是△ABC(含边界)内的一点,P到三边AC、BC、AB的距离分别是x、y、z.
①写出x、y、z.所满足的等量关系;
②利用线性规划相关知识求出x+y+z的取值范围.
分析:(1)设△ABC中的三边分别为a、b、c,由三角形内角和化简sinB=cosAsinC,算出C=
π
2
.由此化简,
AB
AC
=9
,得到b2=9,解出b=3,代入三角形面积公式算出a=4,最后由勾股定理即可算出c的长;
(2)①由三角形面积公式将△ABC的面积分为三块计算,化简得3x+4y+5z=12,即为x、y、z.所满足的等量关系;
②由①化简出x+y+z=
12
5
+
1
5
(2x+y),设目标函数t=2x+y,并根据不等式画出如图可行域,利用直线平移法解出0≤t≤8,从而可得x+y+z的取值范围.
解答:解:(1)设△ABC中角ABC所对边分别为a、b、c
由sinB=cosAsinC,得sin(A+C)=cosAsinC
∴sinAcosC=0,可得C=
π
2

又∵
AB
AC
=9
,得bccosA=9
∴结合ccosA=b,有b2=9,可得b=3.
S△ABC=
1
2
a•b=6

∴a=4,
结合c2=a2+b2,得c=5,
即△ABC的三边长a=4,b=3,c=5;
(2)①S△PAC+S△PBC+S△PAB=S△ABC,可得
1
2
•3x+
1
2
•4y+
1
2
•5z=6

故3x+4y+5z=12.
②x+y+z=x+y+
1
5
(12-3x-4y)=
12
5
+
1
5
(2x+y)

令t=2x+y,依题意有
x≥0
y≥0
3x+4y≤12

画出可行域如图
可知当x=0,y=0时tmin=0
当x=4,y=0时,tmax=8,即0≤t≤8
故x+y+z=
12
5
+
1
5
t
的取值范围为[
12
5
,4]
点评:本题着重考查了向量的数量积、三角形的面积公式、勾股定理的知识,考查了简单的线性规则的知识,属于中档题.解题过程中注意转化化归、数形结合和方程思想的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的内角A、B、C的对边分别为a,b,c,acosB+bcosA=csin(A-B),且a2+b2-
3
ab=c2
,求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的内角A、B、C所对边的长分别为a、b、c,若ac=5,且
BA
BC
=
5

(1)求△ABC的面积大小及tanB的值;
(2)若函数f(x)=
2cos2
x
2
+2sin
x
2
cos
x
2
-1
cos(
π
4
+x)
,求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的内角A,B,C的对边分别为a,b,c,下列说法中:①在△ABC中,a=x,b=2,B=45°,若该三角形有两解,则x取值范围是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,则△ABC的外接圆半径等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,则△ABC的内切圆的半径为2;④在△ABC中,若AB=4,AC=7,BC=9,则BC边的中线AD=
7
2
;⑤设三角形ABC的BC边上的高AD=BC,a、b、c分别表示角A、B、C对应的三边,则
b
c
+
c
b
的取值范围是[2,
5
]
.其中正确说法的序号是
①④⑤
①④⑤
(注:把你认为是正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的内角A,B,C成等差数列,则cos2A+cos2C的取值范围是
[
1
2
3
2
]
[
1
2
3
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门一模)已知△ABC的内角A、B、C所对的边a、b、c满足(a+b)2-c2=6且C=60°,则△ABC的面积S=
3
2
3
2

查看答案和解析>>

同步练习册答案