【题目】阅读:
已知、,,求的最小值.
解法如下:,
当且仅当,即时取到等号,
则的最小值为.
应用上述解法,求解下列问题:
(1)已知,,求的最小值;
(2)已知,求函数的最小值;
(3)已知正数、、,,
求证:.
【答案】(1)9;(2)18;(3)证明见解析.
【解析】
试题分析:本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有
,因此有
此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有 ,从而最终得出.
(1),
2分
而,
当且仅当时取到等号,则,即的最小值为. 5分
(2), 7分
而,,
当且仅当,即时取到等号,则,
所以函数的最小值为. 10分
(3)
当且仅当时取到等号,则. 16分
科目:高中数学 来源: 题型:
【题目】如图,四边形为梯形, , 平面, , , , 为中点.
(1)求证:平面平面;
(2)线段上是否存在一点,使平面?若有,请找出具体位置,并进行证明:若无,请分析说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一次函数f(x)为增函数,且f(f(x))=4x+9,g(x)=mx+m+3(m∈R).
(1)当x∈[-1,2]时,若不等式g(x)>0恒成立,求m的取值范围;
(2)如果函数F(x)=f(x)g(x)为偶函数,求m的值;
(3)当函数f(x)和g(x)满足f(g(x))=g(f(x))时,求函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了参加师大附中第30界田径运动会的开幕式,高三年级某6个班联合到集市购买了6根竹竿,作为班旗的旗杆之用,它们的长度分别为3.8,4.3,3.6,4.5,4.0,4.1(单位:米).
(Ⅰ)若从中随机抽取两根竹竿,求长度之差不超过0.5米的概率;
(Ⅱ)若长度不小于4米的竹竿价格为每根10元,长度小于4米的竹竿价格为每根元.从这6根竹竿中随机抽取两根,若期望这两根竹竿的价格之和为18元,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知随机变量的取值为不大于的非负整数值,它的分布列为:
0 | 1 | 2 | n | ||
其中()满足: ,且.
定义由生成的函数,令.
(I)若由生成的函数,求的值;
(II)求证:随机变量的数学期望, 的方差;
()
(Ⅲ)现投掷一枚骰子两次,随机变量表示两次掷出的点数之和,此时由生成的函数记为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班从6名班干部中(其中男生4人,女生2人),任选3人参加学校的义务劳动.
(1)设所选3人中女生人数为ξ,求ξ的分布列;
(2)求男生甲或女生乙被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.
(Ⅰ)设甲、乙两个班所抽取的10名同学成绩方差分别为、,比较、的大小(直接写出结果,不写过程);
(Ⅱ)从甲班10人任取2人,设这2人中及格的人数为X,求X的分布列和期望;
(Ⅲ)从两班这20名同学中各抽取一人,在已知有人及格的条件下,求抽到乙班同学不及格的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com