精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,曲线的参数方程为为参数),曲线上的点对应的参数.在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.射线与曲线交于点

1)求曲线的直角坐标方程;

2)若点在曲线上,求的值.

【答案】(1)(2)

【解析】

1)由题意可知圆的方程为,代入点,求得极坐标方程,然后再根据转化公式转化为曲线的直角坐标方程;

2)首先求曲线的参数方程为参数),即,将两点的极坐标化为直角坐标,代入椭圆方程,化简求值.

1)设圆的半径为R,由题意,圆的方程为,(或).

将点代入,得,即.

(或由,得,代入,得),

所以曲线的直角坐标方程为

2)将及对应的参数,代入

,即

所以曲线的方程为为参数),

因为点在曲线上,

所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn1+λan,其中λ≠0

1)证明{an}是等比数列,并求其通项公式;

2)当λ2时,求数列{}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】同时具有性质: 最小正周期是;② 图象关于直线对称;③ 上是单调递增函数的一个函数可以是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面为菱形,的中点为O,且平面

1)证明:

2)若,求到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数).

1)当时,若方程有实根,求的最小值;

2)设,若在区间上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)证明:对任意的,存在唯一的,使

3)设(2)中所确定的关于的函数为,证明:当时,有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据如图给出的2005年至2016年我国人口总量及增长率的统计图,以下结论不正确的是  

A. 2005年以来,我国人口总量呈不断增加趋势

B. 2005年以来,我国人口增长率维持在上下波动

C. 2005年后逐年比较,我国人口增长率在2016年增长幅度最大

D. 可以肯定,在2015年以后,我国人口增长率将逐年变大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为,直线l的极坐标方程为.

(1)求直线l的直角坐标方程与曲线C的普通方程;

(2)Q是曲线C上的动点,M为线段PQ的中点,直线l上有两点AB,始终满足|AB|4,求MAB面积的最大值与最小值.

查看答案和解析>>

同步练习册答案