分析 由奇函数的性质得f(1)+f(-1)=a0+a2+a4+…+a2014=0.
解答 解:∵函数$f(x)={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2014}}{x^{2014}}(x∈R)$是奇函数,
∴f(-x)+f(x)=${a}_{0}-{a}_{1}x+{a}_{2}{x}^{2}+…+{a}_{2014}{x}^{2}$+${a}_{0}+{a}_{1}x+{a}_{2}{x}^{2}+…+{a}_{2014}{x}^{2014}$=0,
∴f(1)+f(-1)=a0+a2+a4+…+a2014=0.
故答案为:0.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:选择题
A. | [1,2) | B. | [$\frac{4}{3}$,2] | C. | ($\frac{4}{3}$,2) | D. | [$\frac{4}{3}$,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|-2<x<1} | B. | {x|0<x<1} | C. | {x|1<x<2} | D. | {x|0<x≤1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,2] | B. | (-$\frac{4}{3}$,2] | C. | (-∞,1] | D. | (-$\frac{4}{3}$,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 5 | B. | 7 | C. | 9 | D. | 11 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com