【题目】已知a∈R,函数f(x)=log2( +a).
(1)当a=5时,解不等式f(x)>0;
(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.
(3)设a>0,若对任意t∈[ ,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.
【答案】
(1)
解:当a=5时,f(x)=log2( +5),
由f(x)>0;得log2( +5)>0,
即 +5>1,则 >﹣4,则 +4= >0,即x>0或x<﹣ ,
即不等式的解集为{x|x>0或x<﹣ }
(2)
解:由f(x)﹣log2[(a﹣4)x+2a﹣5]=0得log2( +a)﹣log2[(a﹣4)x+2a﹣5]=0.
即log2( +a)=log2[(a﹣4)x+2a﹣5],
即 +a=(a﹣4)x+2a﹣5>0,①
则(a﹣4)x2+(a﹣5)x﹣1=0,
即(x+1)[(a﹣4)x﹣1]=0,②,
当a=4时,方程②的解为x=﹣1,代入①,成立
当a=3时,方程②的解为x=﹣1,代入①,成立
当a≠4且a≠3时,方程②的解为x=﹣1或x= ,
若x=﹣1是方程①的解,则 +a=a﹣1>0,即a>1,
若x= 是方程①的解,则 +a=2a﹣4>0,即a>2,
则要使方程①有且仅有一个解,则1<a≤2.
综上,若方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,则a的取值范围是1<a≤2,或a=3或a=4.
(3)
解:函数f(x)在区间[t,t+1]上单调递减,
由题意得f(t)﹣f(t+1)≤1,
即log2( +a)﹣log2( +a)≤1,
即 +a≤2( +a),即a≥ ﹣ =
设1﹣t=r,则0≤r≤ ,
= = ,
当r=0时, =0,
当0<r≤ 时, = ,
∵y=r+ 在(0, )上递减,
∴r+ ≥ ,
∴ = = ,
∴实数a的取值范围是a≥ .
【解析】(1)当a=5时,解导数不等式即可.
(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论a的取值范围进行求解即可.
(3)根据条件得到f(t)﹣f(t+1)≤1,恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.
本题主要考查函数最值的求解,以及对数不等式的应用,利用换元法结合对勾函数的单调性是解决本题的关键.综合性较强,难度较大.
科目:高中数学 来源: 题型:
【题目】若函数f(x)满足f′(x)﹣f(x)=2xex , f(0)=1,其中f′(x)为f(x)的导函数,则当x>0时,的最大值为( )
A.
B.2
C.2
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设a,b,c,d>0,且不等于1,y=ax , y=bx , y=cx , y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序( )
A.a<b<c<d
B.a<b<d<c
C.b<a<d<c
D.b<a<c<d
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若=12,其中O为坐标原点,求|MN|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩分成六段[40,50),[50,60)…[90,100]后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求第四小组的频率;
(2)估计这次考试的平均分和中位数(精确到0.01);
(3)从成绩是40~50分及90~100分的学生中选两人,记他们的成绩分别为,求满足“”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地建一座桥,两端的桥墩已建好,这两墩相距640米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为米的相邻两墩之间的桥面工程费用为万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,设需要新建个桥墩,记余下工程的费用为万元.
(1)试写出关于的函数关系式;(注意:)
(2)需新建多少个桥墩才能使最小?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com