精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若,求不等式的解集;

2)若关于的不等式上恒成立,求实数的取值范围.

【答案】1;(2.

【解析】

1时,不等式可化为,对进行分类讨论去掉绝对值,即可求出不等式解集;

2)不等式可化为,分两种情况,讨论不等式恒成立问题,当时,在同一直角坐标系中分别作出的图象,结合图象即可求出的取值范围.

1时,函数

不等式化为

时,不等式化为,解得,即

时,不等式化为,解得,即

时,不等式化为,解得,此时无解;

综上,所求不等式的解集为

2)不等式即为

所以(*),

显然时(*)式在上不恒成立;

时,在同一直角坐标系中分别作出的图象,

如图所示:

由图象知,当,即时(*)式恒成立,

所以实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面是正方形,中点,点上,且.

1)证明平面

2)若,求平面与平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象关于点对称.

1)求函数的解析式;

2)若函数有两个不同零点,求实数的取值范围;

3)若函数上是单调减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线C的参数方程为为参数,),以原点为极点,x轴正半轴为极轴建立极坐标系,直线与直线交于点P,动点Q在射线OP上,且满足|OQ||OP|=8.

1)求曲线C的普通方程及动点Q的轨迹E的极坐标方程;

2)曲线E与曲线C的一条渐近线交于P1P2两点,且|P1P2|=2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是菱形,底面分别是的中点,.

I)证明:

II)求直线与平面所成角的正弦值;

III)在边上是否存在点,使所成角的余弦值为,若存在,确定点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点F为抛物线C)的焦点,过点F的动直线l与抛物线C交于MN两点,且当直线l的倾斜角为45°时,.

1)求抛物线C的方程.

2)试确定在x轴上是否存在点P,使得直线PMPN关于x轴对称?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)当时,求曲线处的切线方程;

2)当时,求函数的单调区间;

3)在(2)的条件下,设函数,若对于,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】眼保健操是一种眼睛的保健体操,主要是通过按摩眼部穴位,调整眼及头部的血液循环,调节肌肉,改善眼的疲劳,达到预防近视等眼部疾病的目的.某学校为了调查推广眼保健操对改善学生视力的效果,在应届高三的全体800名学生中随机抽取了100名学生进行视力检查,并得到如图的频率分布直方图.

1)若直方图中后三组的频数成等差数列,试估计全年级视力在5.0以上的人数;

2)为了研究学生的视力与眼保健操是否有关系,对年级不做眼保健操和坚持做眼保健操的学生进行了调查,得到下表中数据,根据表中的数据,能否在犯错的概率不超过0.005的前提下认为视力与眼保健操有关系?

3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取8人,进一步调查他们良好的护眼习惯,在这8人中任取2人,记坚持做眼保健操的学生人数为X,求X的分布列和数学期望.

附:

0.10

0.05

0.025

0.010

0.005

k

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司新发明了甲、乙两种不同型号的手机,公司统计了消费者对这两种型号手机的评分情况,作出如下的雷达图,则下列说法不正确的是( )

A. 甲型号手机在外观方面比较好.B. 甲、乙两型号的系统评分相同.

C. 甲型号手机在性能方面比较好.D. 乙型号手机在拍照方面比较好.

查看答案和解析>>

同步练习册答案