精英家教网 > 高中数学 > 题目详情
半径为R的球放在墙角,同时与两墙面和地面相切,那么球心到墙角顶点的距离为__    ____.
R

试题分析:根据题意可知球心与墙角顶点可构成边长为a的正方体如图,则球心到墙角顶点的距离为正方体的对角线即R。
故答案为:R。

点评:本题主要考查了空间两点的距离。做本题的关键是构造正方体进行解题,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)
如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.

(1)求证:BD⊥平面PAC;
(2)求二面角P—CD—B余弦值的大小
(3)求点C到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图在三棱锥中,E?F是棱AD上互异的两点,G?H是棱BC上互异的两点,由图可知

①AB与CD互为异面直线;②FH分别与DC?DB互为异面直线;
③EG与FH互为异面直线;④EG与AB互为异面直线.
其中叙述正确的是 (    )
A.①③B.②④C.①②④D.①②③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

夹在的二面角内的一个球与二面角的两个面的切点到棱的距离都是6,则这个球的半径为_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

A-BCD是各条棱长都相等的三棱锥.,那么AB和CD所成的角等于_______。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正四棱锥的侧棱长与底面边长都相等,的中点,则所成的角的余弦值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD—A1B1C1D1中,E、F分别是AB、B1C的中点,则EF与平面ABCD所成的角的正切值为(  )

A. 2
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知空间四边形ABCD中,G是CD的中点,则=
         

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若正四棱柱的底面边长为2,高为4,则异面直线所成角的正切值是_________________.

查看答案和解析>>

同步练习册答案