精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图像过点,且对任意的都有不等式成立.若函数有三个不同的零点,则实数的取值范围是__________________.

【答案】

【解析】

首先由函数的性质确定函数的解析式,然后将原问题转化为两个函数有三个交点的问题,考查临界条件,求得临界值即可确定实数的取值范围.

注意到,,

是函数的切线,且切点坐标为

据此结合题意可知:是函数的切线,且切点坐标为

由函数的解析式有,故:

,解得:

则函数的解析式为

函数有三个不同的零点,

则函数与函数有三个不同的交点,

注意到

绘制函数图像如图所示,考查如图所示的临界情况,

当函数与函数只有两个交点时:

若一次函数过点,则:,解得

若一次函数过点,则:,解得

若一次函数与二次函数在区间内相切,

可得

设切点坐标为,则切线的斜率为:

切线方程为:

整理可得:

由于,考查一次函数斜率与轴截距的关系可得:

,解得:

则切线的斜率为:.

综上可得:实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足,且的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,对任意正数数 恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,点满足,记点的轨迹为.斜率为的直线过点,且与轨迹相交于两点.

1)求轨迹的方程;

2)求斜率的取值范围;

3)在轴上是否存在定点,使得无论直线绕点怎样转动,总有成立?如果存在,求出定点;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形,四边形是梯形,,平面平面,且.

(Ⅰ)求证:∥平面

(Ⅱ)求二面角的大小;

(Ⅲ)已知点在棱上,且异面直线所成角的余弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,平面DAC⊥底面ABCADCDOAC的中点,EBD的中点.

(1)证明:DO⊥底面ABC

(2)求二面角D-AE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】口袋里装有编号为1234的四个小球,有放回的抽取两次,记录两次取到小球的编号分别为.奖励规则如下:

①若,则奖励玩具一个;

②若,则奖励水杯一个;

③其余情况奖励饮料一瓶.

小亮准备参加此项活动.

(Ⅰ)求小亮获得玩具的概率;

(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线轴的交点为,与的交点为,且

(Ⅰ)求的方程;

(Ⅱ)设过定点的直线与抛物线交于两点,连接并延长交抛物线的准线于点,当直线恰与抛物线相切时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知aR,命题p:“x[1,2],x2﹣a≥0”,命题q:“xR,x2+2ax+2﹣a=0”.

(1)若命题p为真命题,求实数a的取值范围;

(2)若命题“pq”为真命题,命题“pq”为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案