精英家教网 > 高中数学 > 题目详情
用数学归纳法证明
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n+n
11
24
(n∈N*)
时,由n=k到n=k+1时,不等式左边应添加的式子为(  )
A.
1
2k+1
B.
1
2k+2
C.
1
2k+1
+
1
2k+2
D.
1
2k+1
-
1
2k+2
当n=k时,左边的代数式为
1
k+1
+
1
k+2
+
1
k+3
+…+
1
k+k

 当n=k+1时,左边的代数式为 
1
k+1+1
+
1
k+1+2
+…+
1
k+1+k
+
1
k+1+(k+i)

故用n=k+1时左边的代数式减去n=k时左边的代数式的结果为:
1
k+1+k
+
1
k+1+(k+i)
-
1
k+1
=
1
2k+1
-
1
2k+2

故选:D..
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用数学归纳法证明
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n+n
11
24
(n∈N*)
时,由n=k到n=k+1时,不等式左边应添加的式子为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n+n
11
24
  (n∈N,n≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n+n
1
24
(n∈N*)由n=k到n=k+1时,不等式左边应添加的项是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明不等式
1
n+1
+
1
n+2
+…+
1
n+n
13
24
的过程中,由“k推导k+1”时,不等式的左边增加了(  )

查看答案和解析>>

同步练习册答案