精英家教网 > 高中数学 > 题目详情
(2010•龙岩二模)已知数列{an}满足an=an+1+4,a18+a20=12,等比数列{bn}的首项为2,公比为q.
(Ⅰ)若q=3,问b3等于数列{an}中的第几项?
(Ⅱ)数列{an}和{bn}的前n项和分别记为Sn和Tn,Sn的最大值为M,当q=2时,试比较M与T9的大小.
分析:(I)根据等比数列的性质求出b3,然后由an=an+1+4,可知{an}是公差d=-4的等差数列,根据a18+a20=12,求出数列的首项和公差,从而求出数列的通项,令an=b3求出n的值,从而得到所求;
(II)根据等比数列的求和公式求出T9,然后根据等差数列的求和公式求出Sn,根据二次函数的性质求出Sn的最大值M,从而得到M与T9的大小.
解答:解:(I)b3=b1q2=18.                                      …(2分)
由an=an+1+4,得an+1-an=-4,即{an}是公差d=-4的等差数列.…(3分)
由a18+a20=12,得a1+18d=6⇒a1=78
∴an=78+(n-1)(-4)=-4n+82
令-4n+82=b3=18,得n=16
∴b3等于数列{an}中的第16项
(II)∵b1=q=2
∴T9=
2(1-29)
1-2
=210-2=1022
又Sn=78n+
n(n-1)
2
•(-4)
=-2n2+80n=-2(n-20)2+800
∴n=20时,最大值M=800
∴M<T9
点评:本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•龙岩二模)已知a为实数,x=1是函数f(x)=
1
2
x2-6x+alnx
的一个极值点.
(Ⅰ)求a的值;
(Ⅱ)若函数f(x)在区间(2m-1,m+1)上单调递减,求实数m的取值范围;
(Ⅲ)设函数g(x)=x+
1
x
,对于任意x≠0和x1,x2∈[1,5],有不等式|λg(x)|-5ln5≥|f(x1)-f(x2)|恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•龙岩二模)已知函数f(x)=xα的图象经过点(2,
2
2
)
,则f(4)的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•龙岩二模)已知f(x)、g(x)都是定义在R上的函数,f'(x)g(x)+f(x)g'(x)<0,f(x)g(x)=ax,f(1)g(1)+f(-1)g(-1)=
5
2
.在区间[-3,0]上随机取一个数x,f(x)g(x)的值介于4到8之间的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•龙岩二模)双曲线
x2
8
-
y2
4
=1
的离心率为
6
2
6
2

查看答案和解析>>

同步练习册答案