精英家教网 > 高中数学 > 题目详情

已知函数f(x)=cos2x+cos(2x-数学公式),给出下列结论:
①f(x)是最小正周期为π的偶函数;
②f(x)的图象关于数学公式对称;
③f(x)的最大值为2;
④将函数数学公式的图象向左平移数学公式就得到y=f(x)的图象.
其中正确的是


  1. A.
    ①②
  2. B.
    ②③
  3. C.
    ②④
  4. D.
    ③④
C
分析:先利用两角差的余弦公式和两角和的正弦公式,将函数f(x)化为y=Asin(ωx+φ)型函数,再利用正弦函数的图象和性质及函数图象变换理论,逐一判断正误即可
解答:函数f(x)=cos2x+cos(2x-)=cos2x+cos2x+sin2x=cos2x+sin2x
=cos2x+sin2x)=sin(2x+),
∵f(x)为非奇非偶函数,故①错误;
将x=代入t=2x+,得t=,而x=为正弦函数的对称轴,故②正确;
显然f(x)的最大值为,③错误;
将函数的图象向左平移就得到y=sin2(x+)=sin(2x+)=f(x),故④正确
故选 C
点评:本题主要考查了三角变换公式在化简函数中的应用,y=Asin(ωx+φ)型函数的图象和性质,函数图象的平移变换,属基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
|x+
1
x
|,x≠0
0     x=0
,则关于x的方程f2(x)+bf(x)+c=0有5个不同实数解的充要条件是(  )
A、b<-2且c>0
B、b>-2且c<0
C、b<-2且c=0
D、b≥-2且c=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)已知△ABC内角A、B、C的对边分别为a、b、c,满足sinB-2sinA=0且c=3,f(C)=0,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象如图所示,则函数的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a,b,c∈R)满足f(0)≥2,f(1)≥2,方程f(x)=0在区间(0,1)上有两个实数根,则实数a的取值范围为
(4,+∞)
(4,+∞)

查看答案和解析>>

同步练习册答案